受限玻尔兹曼机(Restricted Boltzmann Machine, RBM) 简介
受限玻尔兹曼机(Restricted Boltzmann Machine,简称RBM)是由Hinton和Sejnowski于1986年提出的一种生成式随机神经网络(generative stochastic neural network),该网络由一些可见单元(visible unit,对应可见变量,亦即数据样本)和一些隐藏单元(hidden unit,对应隐藏变量)构成,可见变量和隐藏变量都是二元变量,亦即其状态取{0,1}。整个网络是一个二部图,只有可见单元和隐藏单元之间才会存在边,可见单元之间以及隐藏单元之间都不会有边连接,如下图所示:
上图所示的RBM含有12个可见单元(构成一个向量v)和3个隐藏单元(构成一个向量h),W是一个12*3的矩阵,表示可见单元和隐藏单元之间的边的权重。
1. RBM的学习目标-最大化似然(Maximizing likelihood)
RBM是一种基于能量(Energy-based)的模型,其可见变量v和隐藏变量h的联合配置(joint configuration)的能量为:
(式子-1)
其中θ是RBM的参数{W, a, b}, W为可见单元和隐藏单元之间的边的权重,b和a分别为可见单元和隐藏单元的偏置(bias)。
有了v和h的联合配置的能量之后,我们就可以得到v和h的联合概率:
(式子-2)
其中Z(θ)是归一化因子,也称为配分函数(partition function)。根据式子-1,可以将上式写为:
(式子-3)
我们希望最大化观测数据的似然函数P(v),P(v)可由式子-3求P(v,h)对h的边缘分布得到:
(式子-4)
我们通过最大化P(v)来得到RBM的参数,最大化P(v)等同于最大化log(P(v))=L(θ):
(式子-5)
2. RBM的学习方法-CD(Contrastive Divergence,对比散列)
可以通过随机梯度下降(stichastic gradient descent)来最大化L(θ),首先需要求得L(θ)对W的导数:
(式子-6)
经过简化可以得到:
(式子-7)
后者等于
(式子-8)
式子-7中的前者比较好计算,只需要求vihj在全部数据集上的平均值即可,而后者涉及到v,h的全部2|v|+|h|种组合,计算量非常大(基本不可解)。
为了解决式子-8的计算问题,Hinton等人提出了一种高效的学习算法-CD(Contrastive Divergence),其基本思想如下图所示:
首先根据数据v来得到h的状态,然后通过h来重构(Reconstruct)可见向量v1,然后再根据v1来生成新的隐藏向量h1。因为RBM的特殊结构(层内无连接,层间有连接), 所以在给定v时,各个隐藏单元hj的激活状态之间是相互独立的,反之,在给定h时,各个可见单元的激活状态vi也是相互独立的,亦即:
(式子-9)
重构的可见向量v1和隐藏向量h1就是对P(v,h)的一次抽样,多次抽样得到的样本集合可以看做是对P(v,h)的一种近似,使得式子-7的计算变得可行。
RBM的权重的学习算法:
- 取一个样本数据,把可见变量的状态设置为这个样本数据。随机初始化W。
- 根据式子-9的第一个公式来更新隐藏变量的状态,亦即hj以P(hj=1|v)的概率设置为状态1,否则为0。然后对于每个边vihj,计算Pdata(vihj)=vi*hj(注意,vi和hj的状态都是取{0,1})。
- 根据h的状态和式子-9的第二个公式来重构v1,并且根据v1和式子-9的第一个公式来求得h1,计算Pmodel(v1ih1j)=v1i*h1j。
- 更新边vihj的权重Wij为Wij=Wij+L*(Pdata(vihj)=Pmodel(v1ih1j))。
- 取下一个数据样本,重复1-4的步骤。
- 以上过程迭代K次。
参考文献:
1. R. Salakhutdinov. Deep Learning Tutorial.
2. 张春霞, 姬楠楠, 王冠伟. 受限玻尔兹曼机简介.
3. Wikipedia: Restricted Boltzmann Machine
4. Edwin Chen: Introduction to Retricted Boltzmann Machine
受限玻尔兹曼机(Restricted Boltzmann Machine, RBM) 简介的更多相关文章
- 受限玻尔兹曼机(Restricted Boltzmann Machine)
受限玻尔兹曼机(Restricted Boltzmann Machine) 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 1. 生成模型 2. 参数学 ...
- 机器学习理论基础学习19---受限玻尔兹曼机(Restricted Boltzmann Machine)
一.背景介绍 玻尔兹曼机 = 马尔科夫随机场 + 隐结点 二.RBM的Representation BM存在问题:inference 精确:untractable: 近似:计算量太大 因此为了使计算简 ...
- 受限玻尔兹曼机(Restricted Boltzmann Machine,RBM)
这篇写的主要是翻译网上一篇关于受限玻尔兹曼机的tutorial,看了那篇博文之后感觉算法方面讲的很清楚,自己收获很大,这里写下来作为学习之用. 原文网址为:http://imonad.com/rbm/ ...
- 限制玻尔兹曼机(Restricted Boltzmann Machine)RBM
假设有一个二部图,每一层的节点之间没有连接,一层是可视层,即输入数据是(v),一层是隐藏层(h),如果假设所有的节点都是随机二值变量节点(只能取0或者1值)同时假设全概率分布满足Boltzmann 分 ...
- 限制Boltzmann机(Restricted Boltzmann Machine)
起源:Boltzmann神经网络 Boltzmann神经网络的结构是由Hopfield递归神经网络改良过来的,Hopfield中引入了统计物理学的能量函数的概念. 即,cost函数由统计物理学的能量函 ...
- RBM:深度学习之Restricted Boltzmann Machine的BRBM学习+LR分类—Jason niu
from __future__ import print_function print(__doc__) import numpy as np import matplotlib.pyplot as ...
- 基于受限玻尔兹曼机(RBM)的协同过滤
受限玻尔兹曼机是一种生成式随机神经网络(generative stochastic neural network), 详细介绍可见我的博文<受限玻尔兹曼机(RBM)简介>, 本文主要介绍R ...
- 深度学习方法:受限玻尔兹曼机RBM(一)基本概念
欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术.应用感兴趣的同学加入. 最近在复习经典机器学习算法的同 ...
- 受限玻尔兹曼机(RBM)原理总结
在前面我们讲到了深度学习的两类神经网络模型的原理,第一类是前向的神经网络,即DNN和CNN.第二类是有反馈的神经网络,即RNN和LSTM.今天我们就总结下深度学习里的第三类神经网络模型:玻尔兹曼机.主 ...
随机推荐
- sql语句查询结果合并union all用法
整理别人的sql 大概的思想是用union 和union all --合并重复行select * from Aunion select * from B --不合并重复行select * from A ...
- vim 插件 -- ctags
vim ctags 插件实现代码跳转的功能.希望在一个项目中快速的找到函数,变量,宏等定义的地方. 下载 http://ctags.sourceforge.net/ 安装 tar -jxvf ctag ...
- JS--reload 重新加载 true参数
location.reload() 作用是用来重新加载当前显示的页面. 如果调用reload()时不传递参数,页面就会以最有效的方式重新加载. 也就是说,如果页面自上次请求以来并没有改变过,页面就会从 ...
- 封装一个函数,在ThinkPHP中一定程度上取代success和error
1.下载jq2.下载layer3.根据自己的项目配置,将上述2文件放到样式目录中4.在Application/Common/function.php中添加如下代码function msg($msg,$ ...
- python-面向对象:类与类之间的关系和特殊成员
# class Person: # def play(self, tools): # 通过参数的传递把另外一个类的对象传递进来 # tools.run() # print("很开心, 我能玩 ...
- Mosquitto-1.5在Linux上的安装以及Android客户端的实现
一.关于MQTT MQTT(Message Queuing Telemetry Transport,消息队列遥测传输协议),是一种基于发布/订阅(publish/subscribe)模式的" ...
- java学习笔记39(sql事物)
在之前的学习中,我们学习了使用PreparedStatement类,使用这个类消除了sql注入的隐患,可是,还有些一些其他的隐患,这里以银行转账业务为例, 假设 一个银行,张三在里面存了1000元, ...
- Oracle创建表空间报错:O/S-Error: (OS 3) 系统找不到指定的路径
创建sql: CREATE TABLESPACE TBSP_1 DATAFILE 'E:/oracle/product/10.2.0/tablespaces/weblogic.dbf' ...
- git diff 与git format-patch 生成补丁包
git diff commit_id 会生成最后一次提交到目前修改过的内容补丁 git diff commit_id1 commit_id2 会生成两次提交之间修改过的内容补丁 git format- ...
- Linux下修改Jenkins默认端口
我是自动安装的Jenkins,默认目录为 jenkins安装目录:/var/lib/jenkins jenkins日志目录:/var/log/jenkins/jenkins.logjenkins默认配 ...