前言:

  Mapreduce程序的效率的瓶颈在于两点:

计算机性能:
  CPU、内存、磁盘健康、网络
I/O操作:
  数据倾斜
  map和reduce数量设置不合理
  map的运行时间太长,导致reduc的等待过久
  小文件过多
  大量的补课分块的超大文件
  spill(溢写)次数过多
  merge(合并)次数过多

MapReduce优化方法

  数据输入:

    (1)合并小文件:在执行任务前将小文件进行合并

    (2)采用CombineTextInputformat来作为输入,解决输入端大量小文件的场景。将多个小文件从逻辑上规划到一个切片中,这样,多个小文件就可以交给一个 maptask。     

      CombineTextInputFormat.setMaxInputSplitSize(job, 4194304);// 4m

      CombineTextInputFormat.setMinInputSplitSize(job, 2097152);// 2m

      job.setInputFormatClass(CombineTextInputFormat.class)

  Map阶段:

    (1)减少溢写(spill)操作:通过调整 io.sort.mb 及 sort.spill.percent 参数值,增大触发spill 的内存上限,减少 spill 次数,从而减少磁盘 IO。

    (2)减少合并(merge)操作:通过调整 io.sort.factor 参数,增大 merge 的文件数目,减少 merge 的次数,从而缩短 mr 处理时间。

    (3)在不影响业务逻辑的前提下,先进行combine处理,减少I/O。

  Reduce阶段:

    (1)合理设置map和reduce的数量

    (2)设置map、reduce共存:调整 slowstart.completedmaps 参数,使 map 运行到一定程度后,reduce 也开始运行,减少reduce 的等待时间。

    (3)规避使用reduce

    (4)合理使用reduce端的buffer

  I/O传输:

    (1)采用数据压缩的方法,减少网络IO时间

    (2)使用sequenceFile二进制文件

  数据倾斜问题:

    (1)抽样和范围分区

    (2)自定义分区

    (3)Combine

    (4)采用Map join,尽量避免reduce join

  JVM重用:

    对于大量的小文件job,开启JVM重用会减少45%运行时间。 

    具体设置:mapreduce.job.jvm.numtasks 值在 10-20 之间。

    

 

hadoop的企业优化的更多相关文章

  1. Hadoop生态圈-hive优化手段-作业和查询优化

    Hadoop生态圈-hive优化手段-作业和查询优化 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任.

  2. 数据开源工具:Hadoop为企业带来什么?

    熟悉大数据的人一定不会对大名鼎鼎的Hadoop工具陌生,Hadoop是一个由Apache基金会所开发的分布式系统基础架构.用户可以在不了解分布式底层细节的情况下,开发分布式程序.Hadoop的框架最核 ...

  3. haodoop企业优化

    MapReduce 跑的慢的原因 MapReduce程序效率的瓶颈在于两点 计算机性能 CPU,内存,磁盘健康,网络 I/O操作优化 数据倾斜 Map和Reduce数设置不合理 Map运行时间太长,导 ...

  4. nginx配置文件企业优化

    1.1 企业规范优化Nginx配置文件 第一个里程碑:创建扩展目录,生成虚拟主机配置文件 mkdir extra sed -n '10,15p' nginx.conf >extra/www.co ...

  5. oa办公系统快速开发工具,助力企业优化升级

    随着互联网的快速发展.信息化 IT 技术的不断进步.移动互联新技术的兴起,不管是大的集团企业还是中小型企业,纸质化的办公模式已不能满足现有需求,构建oa平台,为员工提供高效的办公环境尤其重要. 我们先 ...

  6. hadoop 任务执行优化

    任务执行优化 1. 推测式执行: 如果jobtracker 发现有拖后的任务,会再启动一个相同的备份任务,然后哪个先执行完就会去kill掉另一个,因此会在监控页面上经常能看到正常执行完的作业会有被ki ...

  7. Hadoop记录-NameNode优化

    1.NameNode启动过程 加载FSImage: 回放EditLog: 执行CheckPoint(非必须步骤,结合实际情况和参数确定,后续详述): 收集所有DataNode的注册和数据块汇报. 采用 ...

  8. Hive 的企业优化

    优化 数据优化 一.从大表拆分成小表(更快地检索) 引用:Hive LanguageManual DDL eg2:常用于分表 create table if not exists default.ce ...

  9. 【Hadoop】Hadoop MR 性能优化 Combiner机制

    1.概念 2.参考资料 提高hadoop的mapreduce job效率笔记之二(尽量的用Combiner) :http://sishuo(k).com/forum/blogPost/list/582 ...

随机推荐

  1. Rabbit mq 简单应用

    参考:http://rabbitmq.mr-ping.com/AMQP/AMQP_0-9-1_Model_Explained.html 简答模式(exchange不工作) import pika # ...

  2. Beta冲刺 (3/7)

    Part.1 开篇 队名:彳艮彳亍团队 组长博客:戳我进入 作业博客:班级博客本次作业的链接 Part.2 成员汇报 组员1(组长)柯奇豪 过去两天完成了哪些任务 熟悉并编写小程序的自定义控件 编辑文 ...

  3. AJPFX简述:MetaTrader 4移动交易平台

    (AJPFX)移动交易平台可以让客户随时通过客户手中的移动设备例如智能手机.PDA等管理自己帐户和进行交易.移动交易平台提供了完整的交易帐户管理分析选项,当客户无法使用台式计算机的时候,移动交易平台为 ...

  4. 第32节:Java中-构造函数,静态方法,继承,封装,多态,包

    构造函数实例 class Cat{ // 设置私有的属性 name private String name; // 设置name的方法 public void setName(String Name) ...

  5. Java学习笔记50(DBCP连接池)

    实际开发中,连接数据库是十分消耗资源的操作,但是,我们又需要频繁地连接数据库 这时候,为了提高效率,这里就会采用连接池技术: 连接池地通俗理解: 一个池里面放入很多的连接,需要哪一个取出来用即可,用完 ...

  6. python中使用双端队列解决回文问题

    双端队列:英文名字:deque (全名double-ended queue)是一种具有队列和栈性质的抽象数据类型. 双端队列中的元素可以从两端弹出,插入和删除操作限定在队列的两边进行. 双端队列可以在 ...

  7. Maven classifier 元素妙用

    首先来看这么一个依赖 <dependency> <groupId>net.sf.json-lib</groupId> <artifactId>json- ...

  8. 【LeetCode】21.合并两个有序链表

    题目 将两个有序链表合并为一个新的有序链表并返回.新链表是通过拼接给定的两个链表的所有节点组成的. 示例: 输入:1->2->4, 1->3->4 输出:1->1-> ...

  9. Ocelot 使用

    官方文档:http://ocelot.readthedocs.io/en/latest/introduction/gettingstarted.html 新建两个Asp.net core API项目 ...

  10. 从零开始学 Web 之 BOM(二)定时器

    大家好,这里是「 从零开始学 Web 系列教程 」,并在下列地址同步更新...... github:https://github.com/Daotin/Web 微信公众号:Web前端之巅 博客园:ht ...