CF 977E Cyclic Components
2 seconds
256 megabytes
standard input
standard output
You are given an undirected graph consisting of nn vertices and mm edges. Your task is to find the number of connected components which are cycles.
Here are some definitions of graph theory.
An undirected graph consists of two sets: set of nodes (called vertices) and set of edges. Each edge connects a pair of vertices. All edges are bidirectional (i.e. if a vertex aa is connected with a vertex bb, a vertex bb is also connected with a vertex aa). An edge can't connect vertex with itself, there is at most one edge between a pair of vertices.
Two vertices uu and vv belong to the same connected component if and only if there is at least one path along edges connecting uu and vv.
A connected component is a cycle if and only if its vertices can be reordered in such a way that:
- the first vertex is connected with the second vertex by an edge,
- the second vertex is connected with the third vertex by an edge,
- ...
- the last vertex is connected with the first vertex by an edge,
- all the described edges of a cycle are distinct.
A cycle doesn't contain any other edges except described above. By definition any cycle contains three or more vertices.
There are 66 connected components, 22 of them are cycles: [7,10,16][7,10,16] and [5,11,9,15][5,11,9,15].
The first line contains two integer numbers nn and mm (1≤n≤2⋅1051≤n≤2⋅105, 0≤m≤2⋅1050≤m≤2⋅105) — number of vertices and edges.
The following mm lines contains edges: edge ii is given as a pair of vertices vivi, uiui (1≤vi,ui≤n1≤vi,ui≤n, ui≠viui≠vi). There is no multiple edges in the given graph, i.e. for each pair (vi,uivi,ui) there no other pairs (vi,uivi,ui) and (ui,viui,vi) in the list of edges.
Print one integer — the number of connected components which are also cycles.
5 4
1 2
3 4
5 4
3 5
1
17 15
1 8
1 12
5 11
11 9
9 15
15 5
4 13
3 13
4 3
10 16
7 10
16 7
14 3
14 4
17 6
2
In the first example only component [3,4,5][3,4,5] is also a cycle.
The illustration above corresponds to the second example.
【题意】
给n个点,m条无向边,找有几个环。(定义:t个点,t条边,首尾依次相接,不含有其他边,围成个圈)
【分析】
网上的思路:利用并查集查找环的个数
我的思路:dfs判环,稍加修饰——
加个记忆化操作:显然每个点要么是一个环上的一点,要么不是;
1、当这个点的度数不为2,一定不是
2、当这个点的邻点不是,一定不是
【代码】
#include<vector>
#include<cstdio>
#include<cstring>
using namespace std;
typedef long long ll;
const int N=2e5+5;
int n,m,du[N],f[N];bool vis[N];
vector<int> e[N];
inline void Init(){
scanf("%d%d",&n,&m);
for(int i=1,x,y;i<=m;i++){
scanf("%d%d",&x,&y);
e[x].push_back(y);
e[y].push_back(x);
du[x]++;du[y]++;
}
}
int dfs(int x,int fa){
int &now=f[x];
if(~now) return now;
now=1;
if(du[x]!=2) return now=0;
if(vis[x]) return now=1;
vis[x]=1;
for(int i=0;i<e[x].size();i++){
int v=e[x][i];
if(x!=fa) now&=dfs(v,x);
if(!now) return now;
}
return now;
}
inline void Solve(){
memset(f,-1,sizeof f);
int ans=0;
for(int i=1;i<=n;i++){
if(!vis[i]){
if(dfs(i,0)){
ans++;
}
}
}
printf("%d\n",ans);
}
int main(){
Init();
Solve();
return 0;
}
CF 977E Cyclic Components的更多相关文章
- Codeforce 977E Cyclic Components
dfs判断图的连通块数量~ #include<cstdio> #include<algorithm> #include<vector> #include<cs ...
- Cyclic Components CodeForces - 977E(DFS)
Cyclic Components CodeForces - 977E You are given an undirected graph consisting of nn vertices and ...
- 【codeforces div3】【E. Cyclic Components】
E. Cyclic Components time limit per test 2 seconds memory limit per test 256 megabytes input standar ...
- Codeforces 977E:Cyclic Components(并查集)
题意 给出nnn个顶点和mmm条边,求这个图中环的个数 思路 利用并查集的性质,环上的顶点都在同一个集合中 在输入的时候记录下来每个顶点的度数,查找两个点相连,且度数均为222的点,如果这两个点的父节 ...
- Cyclic Components CodeForces - 977E(找简单环)
题意: 就是找出所有环的个数, 但这个环中的每个点都必须只在一个环中 解析: 在找环的过程中 判断度数是否为2就行...emm... #include <bits/stdc++.h> us ...
- Codeforce Div-3 E.Cyclic Components
You are given an undirected graph consisting of nn vertices and mm edges. Your task is to find the n ...
- S - Cyclic Components (并查集的理解)
Description You are given an undirected graph consisting of nn vertices and mm edges. Your task is t ...
- E. Cyclic Components (DFS)(Codeforces Round #479 (Div. 3))
#include <bits/stdc++.h> using namespace std; *1e5+; vector<int>p[maxn]; vector<int&g ...
- Codeforces Round #479 (Div. 3) E. Cyclic Components (思维,DFS)
题意:给你\(n\)个顶点和\(m\)条边,问它们有多少个单环(无杂环),例如图中第二个就是一个杂环. 题解:不难发现,如果某几个点能够构成单环,那么每个点一定只能连两条边.所以我们先构建邻接表,然后 ...
随机推荐
- python之组合与重用性
1 组合 组合的概念:软件重用的重要方式除了继承之外还有另外一种方式,即:组合 组合指的是,在一个类中以另外一个类的对象作为数据属性,称为类的组合 >>> class Equip: ...
- MUI学习01-MUI概括、使用前引入CSS及JS
1.MUI含义 目标:追求性能体验,追求原生UI感觉 重要特征:轻量 优势:MUI不依赖任何第三方JS库,压缩后的JS和CSS文件仅有100+K和60+K 基础:MUI以iOS平台UI为基础,补充部分 ...
- python测试开发django-57.xadmin选项二级联动
前言 当我们选择项目分类的时候,一个项目下关联多个模块,同时有这两个选项框的时候,需要实现选中一个项目,模块里面自动删除出该项目下的模块,如下图这种 解决基本思路: 1.写个jqeury脚本监听cha ...
- [MySQL]查看用户权限与GRANT用法
摘自:http://apps.hi.baidu.com/share/detail/15071849 查看用户权限 show grants for 你的用户 比如:show grants for roo ...
- 网络编程之 keepalive(zz)
link1: http://tldp.org/HOWTO/html_single/TCP-Keepalive-HOWTO/ link2: http://dev.csdn.net/article/849 ...
- (原)netbeans中添加anaconda3安装的opencv
转载请注明出处: https://www.cnblogs.com/darkknightzh/p/9974310.html 新装了ubuntu16.04后,直接安装了anaconda3,调试c++程序时 ...
- IDEA使用笔记(十)——设置Java方法注释
如果你看到了,这篇博文,那么你是幸运的!你问什么?你百度百度同类型的网文就明白了! 一:先看效果 二:我的实验过程(肯定还有别的方式) 1:新建 Template Group,详细操作步骤见下图 ...
- ThreadPoolExcutor 线程池 异常处理 (下篇)
前言 因为这是之前面试的一个题目,所以印象比较深刻,前几天写了一篇文章:ThreadPoolExcutor 线程池 异常处理 (上篇) 中已经介绍了线程池异常的一些问题以及一步步分析了里面的一些源代码 ...
- 离线环境下安装ansible,借助有网环境下pip工具
环境 有网的机器(192.168.19.222):rhe65,python2.7.13,pip9.0.1 离线机器(192.168.19.203):rhe65,python2.6 FTP(192.16 ...
- 如何用jQuery获取选中行固定列的数据
[本文出自天外归云的博客园] 问题:把选中行的ID统计出来,组成一个数组传给后台(选中行的特点:class为danger) 办法如下: // 多选后点击下线按钮 $("#offline&qu ...