Gensim是一款开源的第三方Python工具包,用于从原始的非结构化的文本中,无监督地学习到文本隐层的主题向量表达。它支持包括TF-IDF,LSA,LDA,和word2vec在内的多种主题模型算法,支持流式训练,并提供了诸如相似度计算,信息检索等一些常用任务的API接口。

1、实现类

class gensim.models.Word2Vec(sentences=None, size=100, alpha=0.025, window=5, min_count=5, max_vocab_size=None, sample=0.001, seed=1, workers=3, min_alpha=0.0001, sg=0, hs=0, negative=5, cbow_mean=1, hashfxn=<built-in function hash>, iter=5, null_word=0, trim_rule=None, sorted_vocab=1, batch_words=10000)

2、方法:

(1)gensim.models.Word2Vec.similarity(ws1,ws2):计算两个单词之间的余弦相似度。

>>> trained_model.similarity('woman', 'man')
0.73723527 >>> trained_model.similarity('woman', 'woman')
1.0

(2)gensim.models.Word2Vec.n_similarity(ws1,ws2):计算两组单词之间的余弦相似度。

>>> trained_model.n_similarity(['sushi', 'shop'], ['japanese', 'restaurant'])
0.61540466561049689 >>> trained_model.n_similarity(['restaurant', 'japanese'], ['japanese', 'restaurant'])
1.0000000000000004 >>> trained_model.n_similarity(['sushi'], ['restaurant']) == trained_model.similarity('sushi', 'restaurant')
True

(3)gensim.models.Word2Vec.most_similar([positive,negative,topn,...]):找到前N个最相似的单词。

>>> trained_model.most_similar(positive=['woman', 'king'], negative=['man'])
[('queen', 0.50882536), ...]

(4)gensim.models.Word2Vec.similar_by_wordword [,topn,restrict_vocab]):找到前N个最相似的单词。

>>> trained_model.similar_by_word('graph')
[('user', 0.9999163150787354), ...]

(5)gensim.models.Word2Vec.similar_by_vector(vector [,topn,restrict_vocab]):通过向量找到前N个最相似的单词。

>>> trained_model.similar_by_vector([1,2])
[('survey', 0.9942699074745178), ...]

具体使用请阅读其博客内的它文章。

附、参数说明:

sentences: 可以是一个list,对于大语料集,建议使用BrownCorpus,Text8Corpus或lineSentence构建。
size: 是指特征向量的维度,默认为100。大的size需要更多的训练数据,但是效果会更好。推荐值为几十到几百。
alpha: 学习速率
window: 表示当前词与预测词在一个句子中的最大距离是多少。5表示每个词考虑前5个词与后5个词。
min_count: 可以对字典做截断。词频少于min_count次数的单词会被丢弃掉,默认值为5。
max_vocab_size: 设置词向量构建期间的RAM限制。如果所有独立单词个数超过这个,则就消除掉其中最不频繁的一个。每一千万个单词需要大约1GB的RAM。设置成None则没有限制。
sample: 高频词汇的随机降采样的配置阈值,默认为1e-3,范围是(0,1e-5)
seed: 用于随机数发生器。与初始化词向量有关。
workers: 参数控制训练的并行数。
sg: 用于设置训练算法,默认为0,对应CBOW算法;sg=1则采用skip-gram算法。
hs: 如果为1则会采用hierarchica·softmax技巧。如果设置为0(default),则negative sampling会被使用。
negative: 如果>0,则会采用negativesamping,用于设置多少个noise words。
cbow_mean: 如果为0,则采用上下文词向量的和,如果为1(default)则采用均值。只有使用CBOW的时候才起作用。
hashfxn: hash函数来初始化权重。默认使用python的hash函数。
iter: 迭代次数,默认为5。
trim_rule: 用于设置词汇表的整理规则,指定那些单词要留下,哪些要被删除。可以设置为None(min_count会被使用)或者一个接受()并返回RULE_DISCARD,utils。RULE_KEEP或者utils。RULE_DEFAULT的函数。
sorted_vocab: 如果为1(default),则在分配word index 的时候会先对单词基于频率降序排序。
batch_words: 每一批的传递给线程的单词的数量,默认为10000
min_alpha:  

NLP:Gensim库之word2vec的更多相关文章

  1. python Gensim库建立word2vec参数说明

    from gensim.models import word2vec model = word2vec.Word2Vec(sentences, size=80, window=10,workers=6 ...

  2. Python gensim库word2vec 基本用法

    ip install gensim安装好库后,即可导入使用: 1.训练模型定义 from gensim.models import Word2Vec   model = Word2Vec(senten ...

  3. 使用Gensim库对文本进行词袋、TF-IDF和n-gram方法向量化处理

    Gensim库简介 机器学习算法需要使用向量化后的数据进行预测,对于文本数据来说,因为算法执行的是关于矩形的数学运算,这意味着我们必须将字符串转换为向量.从数学的角度看,向量是具有大小和方向的几何对象 ...

  4. 利用Tensorflow进行自然语言处理(NLP)系列之一Word2Vec

    同步笔者CSDN博客(https://blog.csdn.net/qq_37608890/article/details/81513882). 一.概述 本文将要讨论NLP的一个重要话题:Word2V ...

  5. 【NLP】大白话讲解word2vec到底在做些什么

    转载自:http://blog.csdn.net/mylove0414/article/details/61616617 词向量 word2vec也叫word embeddings,中文名“词向量”, ...

  6. gensim加载word2vec训练结果(bin文件)并进行相似度实验

    # -*- coding: utf-8 -*- import gensim # 导入模型 model = gensim.models.KeyedVectors.load_word2vec_format ...

  7. 用gensim学习word2vec

    在word2vec原理篇中,我们对word2vec的两种模型CBOW和Skip-Gram,以及两种解法Hierarchical Softmax和Negative Sampling做了总结.这里我们就从 ...

  8. 6个顶级Python NLP库的比较!

    6个顶级Python NLP库的比较! http://blog.itpub.net/31509949/viewspace-2212320/ 自然语言处理(NLP)如今越来越流行,在深度学习开发的背景下 ...

  9. 利用python中的gensim模块训练和测试word2vec

    word2vec的基础知识介绍参考上一篇博客和列举的参考资料. 首先利用安装gensim模块,相关依赖如下,注意版本要一致: Python >= 2.7 (tested with version ...

随机推荐

  1. oracle学习创建和准备Oracle样例数据库

    此处有一个Oracle创建数据库和表和插入数据的脚本: http://www.forta.com/books/0672336073/

  2. WPF Button 样式

    WPF CheckBox 自定义样式 给Button设置ToolTip <Style TargetType="{x:Type Button}" x:Key="Def ...

  3. 优化实现Mobile/Bumped Diffuse

    在上一篇帖子的基础上增加一张法线贴图即可: Shader "James/Scene/Bumped_Diffuse" { Properties { _MainTex ("B ...

  4. myeclipse中的项目 如何在项目视窗中显示setting,classpath等配置文件

    导入了别人的项目,各种jar包都放好后,path也都build好了,项目也能正常启动,但是就是项目名有红叉,这是为什么呢? 网上有人说Java build path中的jar包missing了,这是一 ...

  5. 六、编写第一个应用【外部nodejs调用】

    一. 参考地址:https://hyperledger-fabric.readthedocs.io/en/latest/write_first_app.html 根据前几节的配置 1.下载代码 git ...

  6. spring-boot项目建立

    使用idea来开发spring-boot项目,对于community版本的idea,由于没有spring-boot插件,所有对于开发spring-boot的web项目来说不是很方便,所以安装Ultim ...

  7. Thinkphp5.1 模板路径报错

    版本:5.1.24   ,windows环境 报错: 模板文件不存在:template\index\default\index\index.html 1.报错原因:linux/windows   对大 ...

  8. 【hbase】Unable to read additional data from client sessionid 0x15c92bd1fca0003, likely client has closed socket

    启动hbase ,验证出错 Master is initializing 查看zk日志,发现Unable to read additional data from client sessionid 0 ...

  9. HTTP Headers 信息

    点开一个条目,可以查看请求的详细信息: General —— 通用信息 Request URL:请求的URL     Request Method:请求的方法     Status Code:响应状态 ...

  10. MySQL 在高并发下的 订单撮合 系统使用 共享锁 与 排他锁 保证数据一致性

    作者:林冠宏 / 指尖下的幽灵 掘金:https://juejin.im/user/587f0dfe128fe100570ce2d8 博客:http://www.cnblogs.com/linguan ...