题目描述

奶牛们正在回味童年,玩一个类似跳格子的游戏,在这个游戏里,奶牛们在草地上画了一行N个格子,(3 <=N <= 250,000),编号为1..N。就像任何一个好游戏一样,这样的跳格子游戏也有奖励!第i个格子标有一个数字V_i(-2,000,000,000 <=V_i <= 2,000,000,000)表示这个格子的钱。奶牛们想看看最后谁能得到最多的钱。规则很简单: * 每个奶牛从0号格子出发。(0号格子在1号之前,那里没钱) * 她向N号格子进行一系列的跳跃(也可以不跳),每次她跳到的格子最多可以和前一 个落脚的格子差K格(1 <= K <= N)(比方说,当前在1号格,K=2, 可以跳到2号和3号格子) *在任何时候,她都可以选择回头往0号格子跳,直到跳到0号格子。另外,除了以上规则之外,回头跳的时候还有两条规则: *不可以跳到之前停留的格子。 *除了0号格子之外,她在回来的时候,停留的格子必须是恰巧过去的时候停留的某个格子的前一格(当然,也可以跳过某些过去时候停留的格子)。简单点说,如果i号格子是回来 停留的格子,i+1号就必须是过去停留的格子,如果i+1号格子是过去停留的格子,i号格子不一定要是回来停留的格子。(如果这里不太清楚的可以去看英文原文)她得到的钱就是所有停留过的格子中的数字的和,请你求出最多奶牛可以得到的钱数。 在样例中,K=2,一行5个格子。 一个合法的序列Bessie可以选择的是0[0], 1[0], 3[2], 2[1], 0[0]。(括号里的数表示钱数) 这样,可以得到的钱数为0+0+2+1+0 = 3。 如果Bessie选择一个序列开头为0, 1, 2, 3, ...,那么她就没办法跳回去了,因为她没办法再跳到一个之前没跳过的格子。序列0[0], 2[1], 4[-3], 5[4], 3[2], 1[0], 0[0]是最大化钱数的序列之一,最后的钱数为(0+1-3+4+2+0 = 4)。

输入

* 第1行 1: 两个用空格隔开的整数: N 和 K * 第2到N+1行: 第i+1行有一个整数: V_i

输出

* 第一行: 一个单个的整数表示最大的钱数是多少。

样例输入

5 2
0
1
2
-3
4

样例输出

4
OUTPUT DETAILS:
还有一种可能的最大化钱数的序列是: 0 2 4 5 3 1 0
 
考虑到题目叙述可能不太清楚,在这里大致说一下题目大意:奶牛要向前跳格子并在跳到某个格子后要向回跳最终跳回起点,每个格子有一个价值(有正有负),且向前跳时每次最多向前跳K个。在向回跳时每次同样最多跳k个且每次必须跳到去时跳的某个格子的前一个格子,每次跳的不能是去时的格子,求最大获得价值。
询问最大值,考虑贪心、搜索和dp,显然贪心是不行,数据范围搜索也不可过,所以自然想到dp。因为奶牛一定要回去,所以设的dp方程要保证奶牛能回去。因为去和回来所跳距离限制相同,所以去时从x跳到y,回来时一定能从y-1跳到x-1,再结合跳回来的规则不难想出f[i]表示去时当前跳到i且留下i-1作为回来的路所得到的最大价值。因为价值要尽可能大,所以一来一回自然要把i之前的所有正数都跳到,再处理出s[i]表示前i个数中所有正数的和,val[i]表示i点的价值。于是就得出了dp转移方程:
f[i]=max{f[j]+s[i-2]-s[j]}+val[i-1]+val[i],(i-K<=j<i-1)。因为回来时一定要走i-1,所以先把它加上。但答案可不是max{f[i]},因为对于f[i],我们留下了i-1作为回去时的落脚点,所以我们还可以把[i+1,i-1+K]中所有正数点走完,最后的结果就是max{f[i]+s[i-1+K]-s[i]}。因为f[i]的转移只和i,j有关所以可以斜率优化。
最后附上代码。
#include<queue>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
long long f[250010];
long long s[250010];
int v[250010];
int n,m;
int q[250010];
int l,r;
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
{
scanf("%d",&v[i]);
if(v[i]>0)
{
s[i]=s[i-1]+v[i];
}
else
{
s[i]=s[i-1];
}
f[i]=-1ll<<60;
}
f[0]=0;
l=r=1;
for(int i=2;i<=n;i++)
{
while(l<=r&&q[l]<i-m)
{
l++;
}
f[i]=f[q[l]]+s[i-2]+v[i-1]+v[i]-s[q[l]];
while(l<=r&&f[q[r]]-s[q[r]]<f[i-1]-s[i-1])
{
r--;
}
q[++r]=i-1;
}
long long ans=s[m];
for(int i=1;i<=n;i++)
{
if(i+m-1<=n)
{
ans=max(ans,f[i]+s[i+m-1]-s[i]);
}
else
{
ans=max(ans,f[i]+s[n]-s[i]);
}
}
printf("%lld",ans);
}

BZOJ1915[USACO 2010 Open Gold 1.Cow Hopscotch]——DP+斜率优化的更多相关文章

  1. bzoj3939 【USACO 2015 FEB GOLD 】cow hopscotch

    Description 就像人类喜欢玩"跳房子"的游戏,农民约翰的奶牛已经发明了该游戏的一个变种自己玩.由于笨拙的动物体重近一吨打,牛跳房子几乎总是以灾难告终,但这是没有阻止奶牛几 ...

  2. BZOJ1785[USACO 2010 Jan Gold 3.Cow Telephones]——贪心

    题目描述 奶牛们建立了电话网络,这个网络可看作为是一棵无根树连接n(1 n 100,000)个节点,节点编号为1 .. n.每个节点可能是(电话交换机,或者电话机).每条电话线连接两个节点.第i条电话 ...

  3. BZOJ1916[USACO 2010 Open Gold 2.Water Slides]——DP+记忆化搜索

    题目描述 受到秘鲁的马丘比丘的新式水上乐园的启发,Farmer John决定也为奶牛们建 一个水上乐园.当然,它最大的亮点就是新奇巨大的水上冲浪.超级轨道包含 E (1 <= E <=15 ...

  4. Poj 2018 Best Cow Fences(分数规划+DP&&斜率优化)

    Best Cow Fences Time Limit: 1000MS Memory Limit: 30000K Description Farmer John's farm consists of a ...

  5. BZOJ1827[USACO 2010 Mar Gold 1.Great Cow Gathering]——树形DP

    题目描述 Bessie正在计划一年一度的奶牛大集会,来自全国各地的奶牛将来参加这一次集会.当然,她会选择最方便的地点来举办这次集会.每个奶牛居住在 N(1<=N<=100,000) 个农场 ...

  6. Usaco 2010 Dec Gold Exercise(奶牛健美操)

    /*codevs 3279 二分+dfs贪心检验 堆版本 re一个 爆栈了*/ #include<cstdio> #include<queue> #include<cst ...

  7. BZOJ1782[USACO 2010 Feb Gold 3.Slowing down]——dfs+treap

    题目描述 每天Farmer John的N头奶牛(1 <= N <= 100000,编号1…N)从粮仓走向他的自己的牧场.牧场构成了一棵树,粮仓在1号牧场.恰好有N-1条道路直接连接着牧场, ...

  8. BZOJ1828[USACO 2010 Mar Gold 2.Barn Allocation]——贪心+线段树

    题目描述 输入 第1行:两个用空格隔开的整数:N和M * 第2行到N+1行:第i+1行表示一个整数C_i * 第N+2到N+M+1行: 第i+N+1行表示2个整数 A_i和B_i 输出 * 第一行: ...

  9. BZOJ1774[USACO 2009 Dec Gold 2.Cow Toll Paths]——floyd

    题目描述 跟所有人一样,农夫约翰以着宁教我负天下牛,休叫天下牛负我的伟大精神,日日夜夜苦思生 财之道.为了发财,他设置了一系列的规章制度,使得任何一只奶牛在农场中的道路行走,都 要向农夫约翰上交过路费 ...

随机推荐

  1. C语言程序设计II—第九周教学

    第九周教学总结(22/4-28/4) 教学内容 本周的教学内容为: 9.1 输出平均分最高的学生信息 知识点:结构的概念.结构的定义形式.结构的嵌套定义.结构变量和结构成员变量的引用.重难点:结构变量 ...

  2. Got fatal error 1236 from master when reading data from binary log: 'Client requested master to start replication from impossible position

    在source那边,执行: flush logs;show master status; 记下File, Position. 在target端,执行: CHANGE MASTER TO MASTER_ ...

  3. Promise使用时应注意的问题

    最近在使用axios库时遇到了个问题,后端接口报了500错误,但前端并未捕获到.1. 调用接口的业务代码如下: // 业务代码调用 axios({ url: url, method: 'post', ...

  4. js求数组的最大值--奇技淫巧和笨方法

    写这篇文章的原因 我目前做的项目很少用到算法,于是这方面的东西自然就有点儿生疏.最近的一次编码中遇到了从数组中获取最大值的需求,当时我不自觉的想到了js的sort()函数,现在想来真是有些“罪过”,当 ...

  5. Random快速产生相同随机数的原因及解决方案

    老生常谈,还是那三句话: 学历代表你的过去,能力代表你的现在,学习代表你的将来 十年河东,十年河西,莫欺少年穷 学无止境,精益求精 问题描述:很多时候我们可能需要在极短的时间内生成大量的随机数,但是你 ...

  6. layer.conifrm 非阻塞执行 ztree删除节点 问题

    layer.confirm无法阻塞js执行,导致ztree插件的beforeRemove回调函数未等待用户确定删除便已经移除界面中的节点, 因此可能会出现前后台数据不一致情况,正常逻辑理应删除后台数据 ...

  7. [开源 .NET 跨平台 Crawler 数据采集 爬虫框架: DotnetSpider] [四] JSON数据解析

    [DotnetSpider 系列目录] 一.初衷与架构设计 二.基本使用 三.配置式爬虫 四.JSON数据解析与配置系统 五.如何做全站采集 场景模拟 接上一篇, JD SKU对应的店铺信息是异步加载 ...

  8. cgroup.conf系统初始配置

    # Slurm cgroup support configuration file # # See man slurm.conf and man cgroup.conf for further # i ...

  9. DevOps知识地图实践指南

    DevOps知识地图   DevOps方法论的主要来源是Agile, Lean 和TOC, 独创的方法论是持续交付. DevOps经典图书: * <DevOps实践指南> * <持续 ...

  10. Tomcat通过自带的Cluster方式实现Session会话共享环境操作记录

    一般来说,在多个tomcat集群业务中,session会话共享是必须的需求,不然前端nginx转发过来的请求不知道之前请求在哪台tomcat节点上,从而就找不到session以至于最终导致请求失败.要 ...