The Chinese Postman Problem HIT - 2739(有向图中国邮路问题)
无向图的问题,如果每个点的度数为偶数,则就是欧拉回路,而对于一个点只有两种情况,奇数和偶数,那么就把都为奇数的一对点 连一条 边权为原图中这两点最短路的值 的边 是不是就好了
无向图中国邮路问题:
有向图的问题,如果每个点的入度和出度相同,则就是欧拉回路,而这个情况就多了,相同、入度少一、入度少俩·····、出度少1、出度少俩,
呐 如果我们把入度少的 和 出度少的连起来是不是就是欧拉回路了,比如说点x的出度为7,入度为3;点y的出度为2,入度为4;点z的出度为2,入度为4;
那么x是连点y还是点z,当然是先连距离最小的那个,假设是y,那么x <- y 连两条边之后,x入度为7,入度为5,y的入度和出度相同,
那么x就开始连z,仔细想一想 这是不是就是费用流,先使路的费用小的满流,然后次小,然后次次小,所以费用流可以完美解决这个问题
有向图的中国邮路问题:
咳咳。。。反正wrong 交网上的代码也wrong
#include <iostream>
#include <cstdio>
#include <sstream>
#include <cstring>
#include <map>
#include <cctype>
#include <set>
#include <vector>
#include <stack>
#include <queue>
#include <algorithm>
#include <cmath>
#include <bitset>
#define rap(i, a, n) for(int i=a; i<=n; i++)
#define rep(i, a, n) for(int i=a; i<n; i++)
#define lap(i, a, n) for(int i=n; i>=a; i--)
#define lep(i, a, n) for(int i=n; i>a; i--)
#define rd(a) scanf("%d", &a)
#define rlld(a) scanf("%lld", &a)
#define rc(a) scanf("%c", &a)
#define rs(a) scanf("%s", a)
#define pd(a) printf("%d\n", a);
#define plld(a) printf("%lld\n", a);
#define pc(a) printf("%c\n", a);
#define ps(a) printf("%s\n", a);
#define MOD 2018
#define LL long long
#define ULL unsigned long long
#define Pair pair<int, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define _ ios_base::sync_with_stdio(0),cin.tie(0)
//freopen("1.txt", "r", stdin);
using namespace std;
const int maxn = , INF = 0x7fffffff, LL_INF = 0x7fffffffffffffff;
int n, m, s, t;
int head[maxn], d[maxn], vis[maxn], p[maxn], f[maxn], fi[maxn];
int in[maxn], out[maxn];
int cnt, flow, value; struct node
{
int u, v, c, w, next;
}Node[maxn << ]; void add(int u, int v, int c, int w)
{
Node[cnt].u = u;
Node[cnt].v = v;
Node[cnt].w = w;
Node[cnt].c = c;
Node[cnt].next = head[u];
head[u] = cnt++;
} int spfa()
{
queue<int> Q;
mem(vis, );
mem(p, -);
for(int i = ; i < maxn; i++) d[i] = INF;
Q.push(s);
d[s] = ;
vis[s] = ;
p[s] = , f[s] = INF;
while(!Q.empty())
{
int u = Q.front(); Q.pop();
vis[u] = ;
for(int i = head[u]; i != -; i = Node[i].next)
{
node e = Node[i];
if(d[e.v] > d[u] + e.w && e.c > )
{
d[e.v] = d[u] + e.w;
p[e.v] = i;
f[e.v] = min(f[u], e.c);
if(!vis[e.v])
{
Q.push(e.v);
vis[e.v] = ;
}
}
}
}
if(p[t] == -) return ;
flow += f[t]; value += f[t] * d[t];
for(int i = t; i != s; i = Node[p[i]].u)
{
Node[p[i]].c -= f[t];
Node[p[i]^].c += f[t];
}
return ;
} void max_flow()
{
while(spfa());
} void init()
{
mem(head, -);
mem(in, );
mem(out, );
cnt = value = flow = ;
} int find(int x)
{
return fi[x] == x ? fi[x] : (fi[x] = find(fi[x]));
} int main()
{
int T;
int u, v, w;
cin >> T;
while(T--)
{
for(int i = ; i < maxn; i++) fi[i] = i;
int flag = , ans = ;
init();
int edge_sum = ;
cin >> n >> m;
s = n + , t = n + ;
for(int i = ; i < m; i++)
{
cin >> u >> v >> w;
int l = find(u);
int r = find(v);
if(l != r) fi[l] = r;
edge_sum += w;
add(u, v, INF, w);
in[v]++;
out[u]++;
}
for(int i = ; i < n; i++)
if(fi[i] == i) ans++;
if(ans > )
{
puts("-1");
continue;
}
int tot_flow = ;
for(int i = ; i < n; i++)
{
if(in[i] == && out[i] == )
{
flag = ;
break;
}
if(out[i] > in[i]) add(i, t, out[i] - in[i], ), tot_flow += out[i] - in[i];
else if(in[i] > out[i]) add(s, i, in[i] - out[i], );
}
if(flag)
{
puts("-1");
continue;
} max_flow();
if(tot_flow != flow)
{
puts("-1");
continue;
}
cout << edge_sum + value << endl;
} return ;
}
The Chinese Postman Problem HIT - 2739(有向图中国邮路问题)的更多相关文章
- HIT 2739 - The Chinese Postman Problem - [带权有向图上的中国邮路问题][最小费用最大流]
题目链接:http://acm.hit.edu.cn/hoj/problem/view?id=2739 Time limit : 1 sec Memory limit : 64 M A Chinese ...
- HITOJ 2739 The Chinese Postman Problem(欧拉回路+最小费用流)
The Chinese Postman Problem My Tags (Edit) Source : bin3 Time limit : 1 sec Memory limit : 6 ...
- Chinese Postman Problem Aizu - DPL_2_B(无向图中国邮路问题)
题意: 带权无向图上的中国邮路问题:一名邮递员需要经过每条边至少一次,最后回到出发点,一条边多次经过权值要累加,问最小总权值是多少.(2 <= N <= 15, 1 <= M < ...
- HIT2739 The Chinese Postman Problem(最小费用最大流)
题目大概说给一张有向图,要从0点出发返回0点且每条边至少都要走过一次,求走的最短路程. 经典的CPP问题,解法就是加边构造出欧拉回路,一个有向图存在欧拉回路的充分必要条件是基图连通且所有点入度等于出度 ...
- FZU - 2038 -E - Another Postman Problem (思维+递归+回溯)
Chinese Postman Problem is a very famous hard problem in graph theory. The problem is to find a shor ...
- Problem E: 穷游中国在统题 优先队列 + 模拟
http://www.gdutcode.sinaapp.com/problem.php?cid=1049&pid=4 Problem E: 穷游中国在统题 Description Travel ...
- LightOJ1086 Jogging Trails(欧拉回路+中国邮递员问题+SPFA)
题目求从某点出发回到该点经过所有边至少一次的最短行程. 这个问题我在<图论算法理论.实现及应用>中看过,是一个经典的问题——中国邮递员问题(CPP, chinese postman pro ...
- Soj题目分类
-----------------------------最优化问题------------------------------------- ----------------------常规动态规划 ...
- 贪心算法:旅行商问题(TSP)
TSP问题(Traveling Salesman Problem,旅行商问题),由威廉哈密顿爵士和英国数学家克克曼T.P.Kirkman于19世纪初提出.问题描述如下: 有若干个城市,任何两个城市之间 ...
随机推荐
- 关于PHP程序员技术职业生涯规划
看到很多PHP程序员职业规划的文章,都是直接上来就提Linux.PHP.MySQL.Nginx.Redis.Memcache.jQuery这些,然后就直接上手搭环境.做项目,中级就是学习各种PHP框架 ...
- React基础篇 - 02.JSX 简介
JSX 简介 请观察下面的变量声明: const element = <h1>Hello, world!</h1>; 这种看起来可能有些奇怪的标签语法既不是字符串也不是HTML ...
- Luogu4886 快递员 点分治
传送门 淀粉质好题啊qaq 我们先考虑随便选择一个点作为邮递中心,通过移动邮递中心找到更优的位置.将路径最大值求出,并将路径最大值对应的那一些路径拿出来考虑.可以知道,如果说这些路径中存在一条经过当前 ...
- 格式化angularjs日期'/Date(-62135596800000)/'
在实现在angularjs时,发现经序列化后的日期需要格式化显示. 翻看以前的博客,似乎有写过一篇有关js方面的解决办法<格式化json日期'/Date(-62135596800000)/'&g ...
- zookeepeer集群搭建
一.预备工作 1.zookeepeer需要安装JDK,至于版本,大家可以去官网查询一下.这里我安装的是JDK8. 2.需要开放zookeepeer用到的端口,默认端口2181.2888.3888,至于 ...
- 通过Jekins执行bat脚本始终无法完成
问题描述 最近在研究Devops工作流,中间有一个环节是自动发布版本的,我们使用PipeLine调用Jekins任务,最终执行bat脚本,但在执行Jekins任务的时候,任务总是完成不了,导致DBA在 ...
- Luogu P2473 [SCOI2008]奖励关
比较恶心的概率(期望)+状压DP,想正推2H的我瑟瑟发抖 由于数据范围不大,因此我们可以直接状压每个宝物取或不取的情况,设\(f_{i,j}\)表示前\(i\)轮且宝物是否取过的状态为\(j\)时的方 ...
- 一次线上redis实例cpu占用率过高问题优化(转)
前情提要: 最近接了大数据项目的postgresql运维,刚接过来他们的报表系统就出现高峰期访问不了的问题,报表涉及实时数据和离线数据,离线读pg,实时读redis.然后自然而然就把redis也挪到我 ...
- 面试2——java基础1
1.int和Integer的区别 1.Integer是int的包装类,int则是java的一种基本数据类型 2.Integer变量必须实例化后才能使用,而int变量不需要 3.Integer实际是对象 ...
- HNOI2019 JOJO
HNOI2019 JOJO jojo这个坑填上了,然鹅还有序列这个题啊啊啊啊啊啊 膜 可持久化这个东西没有强制在线就是假的,直接建树dfs就行了 这题是kmp的加强版,每次会加一堆相同的数进来 先想一 ...