【转】Lucas定理 & 逆元学习小结
(From:离殇灬孤狼)
这个Lucas定理是解决组合数的时候用的,当然是比较大的组合数了。比如C(1000000,50000)% mod,这个mod肯定是要取的,要不算出来真的是天文数字了。
对于一个组合数C(n,k),它等于 n! / ( k! * ( n - k)! ) 我们要求一个mod。但是我们知道的同余定理是在 + - * 这三个运算中使用的,对于除法我们不能轻易的使用同余定理。如果我们能把除数(分母)转化为一个乘法就好了,这个时候我们就用到了逆元的知识:
这就开始说逆元了:
定义:对于正整数和
,如果有
,那么把这个同余方程中
的最小正整数解叫做
模
的逆元。
如果m是素数且GCD(a,mod)== 1,我们就直接可以用费马小定理求了。即求:a^(m-2)% mod。
用快速幂求即可。
如果还不明白逆元是个啥,我举个简单的例子来看看:
求:(24 / 3)% 5 我们可以直接观察得结果:3
但是这个只是个24,如果前面是一个很大很大的数的连乘longlong都存不下呢?我们肯定是一边乘一边求mod。在这里,我们把24对5求模,结果是4。这个4不能直接除以3再求模,一看肯定是错误的。这里我们要把这个4乘3的逆元再求模。根据刚刚说的,3的逆元为3^(5-2) = 27 (或者用扩展欧几里得exGCD(3,5,x,y)这样求出来的x就是3mod5的逆元)。然后按照刚刚说的,4 * 27 % 5 = 3 ,这就是结果了。
反正根据我的理解就是,由于除法不能使用同余定理,那么我们就把除以的这个数转化为乘法,然后用同余定理即可。
逆元如果知道了,我们继续说Lucas定理的使用。
先说一下定义:
Lucas 定理:A、B是非负整数,p是质数。AB写成p进制:A=a[n]a[n-1]...a[0],B=b[n]b[n-1]...b[0] 这里的每一个数组元素表示其p进制的每一位。
则组合数C(A,B)与C(a[n],b[n])*C(a[n-1],b[n-1])*...*C(a[0],b[0])。也就是说,把大组合数问题变成了一个个的小组合数。(A,B小于mod)
对于每一个小组合数,我们继续刚才的说明:n! / ( k! * ( n - k)! ) ,我们要求k!*(n - k)!的逆元。套用上面逆元的求法,再看一下下面的模板,应该就不难理解了。
Lucas定理用递归的方法,代码:
LL Lucas(LL n,LL k) //Lucas定理递归
{
if (k == ) //递归终止条件
return ;
else
return C(n % mod , k % mod) * Lucas(n / mod , k / mod) % mod;
}
然后我们要求组合数,代码:
这里用到了快速幂,代码:
LL quick_mod(LL n , LL m) //求快速幂
{
LL ans = ;
n %= mod;
while (m)
{
if (m & )
ans = ans * n % mod;
n = n * n % mod;
m >>= ;
}
return ans;
}
对于阶乘,我们可以先打一个表,运算就快很多:
void getfac() //打一个阶乘表
{
for (int i = ; i <= ; i++)
fac[i] = fac[i-] * i % mod;
}
来一个大代码:(求大组合数对mod = 1000003求模)
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
#define CLR(a,b) memset(a,b,sizeof(a))
#define INF 0x3f3f3f3f
#define LL long long
LL mod = ;
LL fac[+] = {,};
void getfac() //打一个阶乘表
{
for (int i = ; i <= ; i++)
fac[i] = fac[i-] * i % mod;
}
LL quick_mod(LL n , LL m) //求快速幂
{
LL ans = ;
n %= mod;
while (m)
{
if (m & )
ans = ans * n % mod;
n = n * n % mod;
m >>= ;
}
return ans;
}
LL C(LL n , LL k) //费马小定理求逆元
{
if (k > n)
return ;
else
return fac[n] * (quick_mod(fac[k] * fac[n-k] % mod , mod - )) % mod;
}
LL Lucas(LL n,LL k) //Lucas定理递归
{
if (k == ) //递归终止条件
return ;
else
return C(n % mod , k % mod) * Lucas(n / mod , k / mod) % mod;
}
int main()
{
getfac();
LL n,k;
int Case = ;
int u;
scanf ("%d",&u);
while (u--)
{
scanf ("%lld %lld",&n,&k);
printf ("Case %d: %lld\n",Case++,Lucas(n,k));
}
return ;
}
http://blog.csdn.net/clove_unique/article/details/54571216
【转】Lucas定理 & 逆元学习小结的更多相关文章
- [Lucas定理]【学习笔记】
Lucas定理 [原文]2017-02-14 [update]2017-03-28 Lucas定理 计算组合数取模,适用于n很大p较小的时候,可以将计算简化到小于p $ \binom{n}{m} \m ...
- lucas定理 +证明 学习笔记
lucas定理 p为素数 \[\dbinom n m\equiv\dbinom {n\%p} {m\%p} \dbinom {n/p}{m/p}(mod p)\] 左边一项直接求,右边可递归处理,不包 ...
- CF451E Devu and Flowers (隔板法 容斥原理 Lucas定理 求逆元)
Codeforces Round #258 (Div. 2) Devu and Flowers E. Devu and Flowers time limit per test 4 seconds me ...
- HDU3037 Saving Beans(Lucas定理+乘法逆元)
题目大概问小于等于m个的物品放到n个地方有几种方法. 即解这个n元一次方程的非负整数解的个数$x_1+x_2+x_3+\dots+x_n=y$,其中0<=y<=m. 这个方程的非负整数解个 ...
- lucas 定理学习
大致意思就是求组合数C(n , m) % p的值, p为一个偶数 可以将组合数的n 和 m都理解为 p 进制的表示 n = ak*p^k + a(k-1)*p^(k-1) + ... + a1*p ...
- Lucas定理学习小记
(1)Lucas定理:p为素数,则有: (2)证明: n=(ak...a2,a1,a0)p = (ak...a2,a1)p*p + a0 = [n/p]*p+a0,m=[m/p]*p+b0其次,我们 ...
- Lucas定理学习(进阶中)
(1)Lucas定理:p为素数,则有: (2)证明: n=(ak...a2,a1,a0)p = (ak...a2,a1)p*p + a0 = [n/p]*p+a0,m=[m/p]*p+b0其次,我们 ...
- [模板] 数学基础:快速幂/乘/逆元/exGCD/(ex)CRT/(ex)Lucas定理
方便复制 快速乘/幂 时间复杂度 \(O(\log n)\). ll nmod; //快速乘 ll qmul(ll a,ll b){ ll l=a*(b>>hb)%nmod*(1ll< ...
- Lucas定理学习笔记
从这里开始 一个有趣的问题 扩展Lucas算法 一个有趣的问题 题目大意 给定$n, m, p$,求$C_{n}^{m}$除以$p$后的余数. Subtask#1 $0\leqslant m\leq ...
随机推荐
- Window系统下MongoDB安装及远程访问
1.编辑mongodb 安装文件夹bin\mongod.cfg 把bindIP 改为 127.0.0.1, 192.168.1.180(局域网IP) 可以参考https://blog.csdn.net ...
- Office 365系列(二) -一些比较容易混淆的概念
上一篇比较简明地说了Office 365怎么注册使用,在继续探讨之前先讨论一些比较容易混淆的概念! 1. Office 365: 是微软云计划的一部分包括Exchange online, Lync ...
- RMQ with Shifts(线段树)
RMQ with Shifts Time Limit:1000MS Memory Limit:65535KB 64bit IO Format:%I64d & %I64u Pra ...
- vue Element UI 导航高亮
1. activeIndex 为默认高亮值,根据改变activeIndex的值来改变高亮的值 当页面改变的时候获取当前的路由地址,截取第一个 / 后面的值,就是当前的高亮值了 为什么要截取呢? 因为点 ...
- Java中List.remove报UnsupportedOperationException异常
今天项目中有个需求场景: A和B都是List,而B是A的子集,现在想求A和B的差集. 想到了List中提供的removeAll()方法可以求得差集,但是结果确报了UnsupportedOperatio ...
- iOS解决导航引起视图高度问题
经过导航栏跨越的坑,总结出有两种方法可以无痕解决(前提>=iOS7版本)(TabBar与导航栏类似) 1.通过设置导航栏的透明度实现(这种方式的控制器view的起始坐标是充(0,64)开始的) ...
- 【python】-- 类的反射
反射 反射我们以后会经常用到,这个东西实现了动态的装配,通过字符串来反射类中的属性和方法 一.反射函数 1.hasarttr(obj,name_str) 作用:判断一个对象obj中是否有对应的name ...
- CSS 布局实例系列(四)如何实现容器中每一行的子容器数量随着浏览器宽度的变化而变化?
Hello,小朋友们,还记得我是谁吗?对了,我就是~超威~好啦,言归正传,今天的布局实例是: 实现一个浮动布局,红色容器中每一行的蓝色容器数量随着浏览器宽度的变化而变化,就如下图: 肯定有人心里犯嘀咕 ...
- python+NLTK 自然语言学习处理八:分类文本一
从这一章开始将进入到关键部分:模式识别.这一章主要解决下面几个问题 1 怎样才能识别出语言数据中明显用于分类的特性 2 怎样才能构建用于自动执行语言处理任务的语言模型 3 从这些模型中我们可以学到那些 ...
- Docker dubbo 服务注册
vim run.sh #!/bin/baship=`ifconfig eth0 |grep "inet"|awk '{print $2}'`hn=dubbo-service-pro ...