点此看题面

大致题意: 求出有多少个长度为\(n\)的排列满足对于奇数位\(a_{i-1}<a_i\),对于偶数位\(a_{i-1}>a_i\)。

考虑打表?

考虑每次只有一个数\(n\),且\(n\le1000\),首先想到的自然是打表。

打表程序略(其实是手贱不小心删掉了)。

然后放到\(OEIS\)上,我们就可以找到一个\(Python\)的伪代码。

于是\(hl666\)神仙就切了此题。

动态规划

当然,像我这么弱,不会\(Python\),只好去写\(DP\)了。

我们可以设\(f_i\)表示有多少个长度为\(i\)的排列满足条件

考虑加入一个数\(i+1\),我们可以把原来一个合法的数列挑选一个位置分成两半,枚举两边的数个数分别为\(j\)和\(i-j\)。

则两边的情况数其实分别就是\(f_j\)与\(f_{i-j}\),而\(j\)个数从\(i\)个数中的选择方案为\(C_i^j\)。

但问题在于这样刚好会有一半的情况是不合法的,因此还要再除以\(2\)。

所以最终的转移方程就是:

\[f_{i+1}=\frac{\sum_{j=0}^if_jf_{i-j}C_i^j}2
\]

也就相当于:

\[f_i=\frac{\sum_{j=0}^{i-1}f_jf_{i-1-j}C_{i-1}^j}2
\]

初始化\(f_0=f_1=1\)。

代码

#include<bits/stdc++.h>
#define Tp template<typename Ty>
#define Ts template<typename Ty,typename... Ar>
#define Reg register
#define RI Reg int
#define Con const
#define CI Con int&
#define I inline
#define W while
#define N 1000
#define X 1000000007
#define C(x,y) (1LL*Fac[x]*Inv[y]%X*Inv[(x)-(y)]%X)
#define Qinv(x) Qpow(x,X-2)
#define Inc(x,y) ((x+=(y))>=X&&(x-=X))
using namespace std;
int n,a[N+5],f[N+5],Fac[N+5],Inv[N+5];
I int Qpow(RI x,RI y) {RI t=1;W(y) y&1&&(t=1LL*t*x%X),x=1LL*x*x%X,y>>=1;return t;}//快速幂
int main()
{
RI i,j,I2=X+1>>1;for(scanf("%d",&n),Fac[0]=i=1;i<=n;++i) Fac[i]=1LL*Fac[i-1]*i%X;//预处理阶乘
for(Inv[n]=Qinv(Fac[n]),i=n-1;~i;--i) Inv[i]=1LL*Inv[i+1]*(i+1)%X;//预处理阶乘逆元
for(f[0]=f[1]=1,i=2;i<=n;f[i]=1LL*f[i]*I2%X,++i) for(j=0;j^i;++j) Inc(f[i],1LL*f[j]*f[i-1-j]%X*C(i-1,j)%X);//DP转移
return printf("%d",f[n]),0;//输出答案
}

【CCPC-Wannafly Winter Camp Day4 (Div1) G】置置置换(动态规划)的更多相关文章

  1. 2020 CCPC Wannafly Winter Camp Day1 C. 染色图

    2020 CCPC Wannafly Winter Camp Day1 C. 染色图 定义一张无向图 G=⟨V,E⟩ 是 k 可染色的当且仅当存在函数 f:V↦{1,2,⋯,k} 满足对于 G 中的任 ...

  2. CCPC Wannafly Winter Camp Div2 部分题解

    Day 1, Div 2, Prob. B - 吃豆豆 题目大意 wls有一个\(n\)行\(m\)列的棋盘,对于第\(i\)行第\(j\)列的格子,每过\(T[i][j]\)秒会在上面出现一个糖果, ...

  3. CCPC-Wannafly Winter Camp Day4 Div1 - 置置置换 - [DP]

    题目链接:https://zhixincode.com/contest/18/problem/G?problem_id=265 题目描述 wls有一个整数 $n$,他想请你算一下有多少 $1...n$ ...

  4. Wannafly Winter Camp Day8(Div1,onsite) E题 Souls-like Game 线段树 矩阵乘法

    目录 Catalog Solution: (有任何问题欢迎留言或私聊 && 欢迎交流讨论哦 Catalog @ Problem:传送门  Portal  原题目描述在最下面.  简单的 ...

  5. Wannafly Winter Camp Day5 Div1 E题 Fast Kronecker Transform 转化为NTT或FFT

    目录 Catalog Solution: (有任何问题欢迎留言或私聊 && 欢迎交流讨论哦 Catalog @ Problem:传送门  原题目描述在最下面.  对给定的式子算解.   ...

  6. CCPC-Wannafly Winter Camp Day4 Div1 - 咆咆咆哮 - [三分+贪心]

    题目链接:https://zhixincode.com/contest/18/problem/I?problem_id=267 题目描述 输入描述 输出描述 一行一个整数表示答案. 样例输入 1 32 ...

  7. CCPC-Wannafly Winter Camp Day4 Div1 - 最小边覆盖 - [线段树]

    题目链接:https://zhixincode.com/contest/18/problem/C?problem_id=261 样例输入 1 4 21 23 4 样例输出 1 Yes 样例输入 2 4 ...

  8. CCPC-Wannafly Winter Camp Day4 Div1 - 夺宝奇兵 - [简单思维题]

    题目链接:https://zhixincode.com/contest/18/problem/A?problem_id=259 题目描述 wls正在玩一个寻宝游戏. 宝藏一共有 $n$ 种,都藏在一个 ...

  9. 【CCPC-Wannafly Winter Camp Day3 (Div1) G】排列(水题)

    点此看题面 大致题意:已知 \(p\)为\(n\)的一个排列,定义\(A(p)_i=min_{j=1}^ip_j\),若用\(q_i\)表示\(p\)第\(i\)小的前缀的长度(以值为第一关键字,下标 ...

随机推荐

  1. tp5分组查询

    $data=DB::name('goods_common')->alias('a')->join('all580_goods_attractions w','a.common_id = w ...

  2. Linux链接器脚本详解

    /* GNU linker script for STM32F405 */ /* Specify the memory areas */ MEMORY { FLASH (rx) : ORIGIN = ...

  3. STL之 sort排序与检索(2019.1.18)

    1.作用对象:数组  a[n] 头文件:#include<algorithm> 内容:sort(a,a+n) 功能:进行升序排序 内容:lower_bound(a,a+n,x) 功能:找到 ...

  4. Python中的数据类型和数据结构

    一.数据类型 Python中有六个标准数据类型: Number(数字) String(字符串) List(列表) Tuple(元组) Sets(集合) Dictionary(字典) 其中,除列表Lis ...

  5. /proc下重要路径知识

    /proc 虚拟目录,是内存的映射,内核与进程的虚拟文件系统目录/proc/version 内核版本/proc/sys/kernel 系统内核功能/proc/sys/net/ipv4*/proc/cp ...

  6. Message Unable to connect to SQL Server '(local)'

    最近在sql server 加了一些job,但是run job的时候发生了一下错误: ssage Unable to connect to SQL Server '(local)' 问题根源:调用 T ...

  7. 【C】一个读取文件记录器

    分享一下!!! #include<stdio.h> #include<windows.h> #define N 70000 //定义行数!!用空间换取时间 struct stu ...

  8. Magnum基本介绍

    Magnum is an OpenStack API service developed by the OpenStack Containers Team making container orche ...

  9. Beam概念学习系列之PCollection数据集

    不多说,直接上干货! PCollection数据集  PCollection是Apache Beam中数据的不可变集合,可以是有限的数据集合也可以是无限的数据集合. 有限数据集,这种一般对应的是批处理 ...

  10. C#中StreamReader读取中文文本出现乱码的解决方法

    在编写文本文件读写程序的过程中,有如下代码 StreamReader sr = new StreamReader(FileName); 结果发现打开中文文本文件出现乱码. 究其原因,原来自从Windo ...