Luogu 1450 [HAOI2008]硬币购物
优美的dp + 容斥。
首先可以不用考虑数量限制,处理一个完全背包$f_{i}$表示用四种面值的硬币购买的方案数,对于每一个询问,我们考虑容斥。
我们的$f_{s}$其实多包含了$f_{s - c_{i} * (d_{i} + 1)}$,所以我们把这些减去(这个式子的意思可以看成把$d_{i} + 1$以上的数全部都删掉做一个完全背包,就是只选$d_{i}$个),然而这样多减掉了同时选择两个的,又多加了同时选择三个的……
写成位运算就很优美啦。
时间复杂度$O(maxS + |s| * 2^{|s|} * tot)$。
Code:
#include <cstdio>
#include <cstring>
using namespace std;
typedef long long ll; const int N = 1e5 + ; int testCase, c[], d[];
ll f[N]; template <typename T>
inline void read(T &X) {
X = ;
char ch = ;
T op = ;
for(; ch > '' || ch < ''; ch = getchar())
if(ch == '-') op = -;
for(; ch >= '' && ch <= ''; ch = getchar())
X = (X << ) + (X << ) + ch - ;
X *= op;
} int main() {
for(int i = ; i <= ; i++) read(c[i]); f[] = ;
for(int i = ; i <= ; i++)
for(int j = c[i]; j <= ; j++)
f[j] += f[j - c[i]]; /* for(int i = 0; i <= 20; i++)
printf("%lld ", f[i]);
printf("\n"); */ for(read(testCase); testCase--; ) {
for(int i = ; i <= ; i++) read(d[i]);
int s; read(s);
ll res = ;
for(int i = ; i <= ; i++) {
ll tot = s; bool flag = ;
for(int j = ; j < ; j++)
if(i & ( << j)) flag ^= , tot -= c[j + ] * (d[j + ] + );
if(tot < ) continue;
if(flag) res -= f[tot];
else res += f[tot];
}
printf("%lld\n", res);
} return ;
}
Luogu 1450 [HAOI2008]硬币购物的更多相关文章
- [Luogu P1450] [HAOI2008]硬币购物 背包DP+容斥
题面 传送门:https://www.luogu.org/problemnew/show/P1450 Solution 这是一道很有意思的在背包里面做容斥的题目. 首先,我们可以很轻松地想到暴力做背包 ...
- Luogu P1450 [HAOI2008]硬币购物 背包+容斥原理
考虑如果没有个数的限制,那么就是一个完全背包,所以先跑一个完全背包,求出没有个数限制的方案数即可. 因为有个数的限制,所以容斥一下:没有1个超过限制的方案=至少0个超过限制-至少1个超过限制+至少2个 ...
- Luogu P1450 [HAOI2008]硬币购物
题目 一个很自然的想法是容斥. 假如只有一种硬币,那么答案就是没有限制的情况下买\(s\)的方案数减去强制用了\(d+1\)枚情况下买\(s\)的方案数即没有限制的情况下买\(s-c(d+1)\)的方 ...
- 2021.12.06 P1450 [HAOI2008]硬币购物(组合数学+抽屉原理+DP)
2021.12.06 P1450 [HAOI2008]硬币购物(组合数学+抽屉原理+DP) https://www.luogu.com.cn/problem/P1450 题意: 共有 44 种硬币.面 ...
- Bzoj 1042: [HAOI2008]硬币购物 容斥原理,动态规划,背包dp
1042: [HAOI2008]硬币购物 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1747 Solved: 1015[Submit][Stat ...
- bzoj 1042: [HAOI2008]硬币购物 dp+容斥原理
题目链接 1042: [HAOI2008]硬币购物 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1706 Solved: 985[Submit][ ...
- BZOJ 1042: [HAOI2008]硬币购物( 背包dp + 容斥原理 )
先按完全背包做一次dp, dp(x)表示x元的东西有多少种方案, 然后再容斥一下. ---------------------------------------------------------- ...
- BZOJ 1042: [HAOI2008]硬币购物 [容斥原理]
1042: [HAOI2008]硬币购物 题意:4种硬币.面值分别为c1,c2,c3,c4.1000次询问每种硬币di个,凑出\(s\le 10^5\)的方案数 完全背包方案数? 询问太多了 看了题解 ...
- BZOJ_1042_[HAOI2008]硬币购物_容斥原理+背包
BZOJ_1042_[HAOI2008]硬币购物_容斥原理+背包 题意: 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买s i的价值 ...
随机推荐
- Python+Apache+CGI完全配置
http://www.tuicool.com/articles/jIZfaqQ 操作系统环境:Ubuntu 15.10 0.需求原因 想在我的Linux上架设Apache来运行CGI程序,方便以后用A ...
- VI编辑器、ipython、jupyter及进程
VI编辑器.ipython.jupyter及进程知识总结 https://www.cnblogs.com/thoughtful-actors/p/9650959.html VI编辑器.ipython. ...
- Storm实时计算:流操作入门编程实践
转自:http://shiyanjun.cn/archives/977.html Storm实时计算:流操作入门编程实践 Storm是一个分布式是实时计算系统,它设计了一种对流和计算的抽象,概念比 ...
- 重温CLR(一)CLR基础
如果一个C#developer,对CLR没有了解,那就只能是入门级别.未来.NET CORE是趋势,但是.NET CORE 也是基于CoreCLR的,而CLR和CoreCLR其实差别不大,从runti ...
- 开启MySQL的sql语句记录
在开发的时候经常会想看一下MySQL最终执行的sql或者想保存sql记录,所以我们可以启用MySQL的sql记录功能. 开启方法:Linux下编辑MySQL的my.cnf文件,windows下编辑my ...
- BZOJ1202:[HNOI2005]狡猾的商人
浅谈并查集:https://www.cnblogs.com/AKMer/p/10360090.html 题目传送门:https://lydsy.com/JudgeOnline/problem.php? ...
- ECMAScript 2016(ES7) 知多少
ECMAScript 2016(ES7) 知多少 1. 数组方法 Array.prototype.includes(value : any) : boolean 2. 幂运算符 x ** y 扩展阅读 ...
- Poj 1321 棋盘问题(搜索)
Description 在一个给定形状的棋盘(形状可能是不规则的)上面摆放棋子,棋子没有区别.要求摆放时任意的两个棋子不能放在棋盘中的同一行或者同一列,请编程求解对于给定形状和大小的棋盘,摆放k个棋子 ...
- 侯捷STL学习(二)--序列容器测试
第六节:容器之分类和各种测试(四) stack不提供iterator操作,破坏了容器的独特性,先进先出. 使用容器multiset(允许元素重复) 内部是红黑树,insert操作就保证了排好了序. 标 ...
- 下拉列表---demo---bai
select.jsp <%@ page language="java" import="java.util.*" pageEncoding="U ...