优美的dp + 容斥。

首先可以不用考虑数量限制,处理一个完全背包$f_{i}$表示用四种面值的硬币购买的方案数,对于每一个询问,我们考虑容斥。

我们的$f_{s}$其实多包含了$f_{s - c_{i} * (d_{i} + 1)}$,所以我们把这些减去(这个式子的意思可以看成把$d_{i} + 1$以上的数全部都删掉做一个完全背包,就是只选$d_{i}$个),然而这样多减掉了同时选择两个的,又多加了同时选择三个的……

写成位运算就很优美啦。

时间复杂度$O(maxS + |s| * 2^{|s|} * tot)$。

Code:

#include <cstdio>
#include <cstring>
using namespace std;
typedef long long ll; const int N = 1e5 + ; int testCase, c[], d[];
ll f[N]; template <typename T>
inline void read(T &X) {
X = ;
char ch = ;
T op = ;
for(; ch > '' || ch < ''; ch = getchar())
if(ch == '-') op = -;
for(; ch >= '' && ch <= ''; ch = getchar())
X = (X << ) + (X << ) + ch - ;
X *= op;
} int main() {
for(int i = ; i <= ; i++) read(c[i]); f[] = ;
for(int i = ; i <= ; i++)
for(int j = c[i]; j <= ; j++)
f[j] += f[j - c[i]]; /* for(int i = 0; i <= 20; i++)
printf("%lld ", f[i]);
printf("\n"); */ for(read(testCase); testCase--; ) {
for(int i = ; i <= ; i++) read(d[i]);
int s; read(s);
ll res = ;
for(int i = ; i <= ; i++) {
ll tot = s; bool flag = ;
for(int j = ; j < ; j++)
if(i & ( << j)) flag ^= , tot -= c[j + ] * (d[j + ] + );
if(tot < ) continue;
if(flag) res -= f[tot];
else res += f[tot];
}
printf("%lld\n", res);
} return ;
}

Luogu 1450 [HAOI2008]硬币购物的更多相关文章

  1. [Luogu P1450] [HAOI2008]硬币购物 背包DP+容斥

    题面 传送门:https://www.luogu.org/problemnew/show/P1450 Solution 这是一道很有意思的在背包里面做容斥的题目. 首先,我们可以很轻松地想到暴力做背包 ...

  2. Luogu P1450 [HAOI2008]硬币购物 背包+容斥原理

    考虑如果没有个数的限制,那么就是一个完全背包,所以先跑一个完全背包,求出没有个数限制的方案数即可. 因为有个数的限制,所以容斥一下:没有1个超过限制的方案=至少0个超过限制-至少1个超过限制+至少2个 ...

  3. Luogu P1450 [HAOI2008]硬币购物

    题目 一个很自然的想法是容斥. 假如只有一种硬币,那么答案就是没有限制的情况下买\(s\)的方案数减去强制用了\(d+1\)枚情况下买\(s\)的方案数即没有限制的情况下买\(s-c(d+1)\)的方 ...

  4. 2021.12.06 P1450 [HAOI2008]硬币购物(组合数学+抽屉原理+DP)

    2021.12.06 P1450 [HAOI2008]硬币购物(组合数学+抽屉原理+DP) https://www.luogu.com.cn/problem/P1450 题意: 共有 44 种硬币.面 ...

  5. Bzoj 1042: [HAOI2008]硬币购物 容斥原理,动态规划,背包dp

    1042: [HAOI2008]硬币购物 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1747  Solved: 1015[Submit][Stat ...

  6. bzoj 1042: [HAOI2008]硬币购物 dp+容斥原理

    题目链接 1042: [HAOI2008]硬币购物 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1706  Solved: 985[Submit][ ...

  7. BZOJ 1042: [HAOI2008]硬币购物( 背包dp + 容斥原理 )

    先按完全背包做一次dp, dp(x)表示x元的东西有多少种方案, 然后再容斥一下. ---------------------------------------------------------- ...

  8. BZOJ 1042: [HAOI2008]硬币购物 [容斥原理]

    1042: [HAOI2008]硬币购物 题意:4种硬币.面值分别为c1,c2,c3,c4.1000次询问每种硬币di个,凑出\(s\le 10^5\)的方案数 完全背包方案数? 询问太多了 看了题解 ...

  9. BZOJ_1042_[HAOI2008]硬币购物_容斥原理+背包

    BZOJ_1042_[HAOI2008]硬币购物_容斥原理+背包 题意: 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买s i的价值 ...

随机推荐

  1. leetcode_sql_2,183

    183. Customers Who Never Order Suppose that a website contains two tables, the Customers table and t ...

  2. kafka集群下线broker节点实践方法(broker topic 迁移)

    [root@es03 ~]# cd /usr/hdp//kafka/bin [root@es03 kafka]# cd bi -bash: cd: bi: No such file or direct ...

  3. C#异步编程(二)用户模式线程同步

    基元线程同步构造 多个线程同时访问共享数据时,线程同步能防止数据损坏.不需要线程同步是最理想的情况,因为线程同步存在许多问题. 第一个问题就是它比较繁琐,而且很容易写错. 第二个问题是,他们会损害性能 ...

  4. 图的m着色问题 (回溯搜索)

    图的m着色问题 [问题描述]        给定无向连通图G和m种不同的颜色.用这些颜色为图G的各顶点着色,每个顶点着一种颜色.如果有一种着色法使G中每条边的2个顶点着不同颜色,则称这个图是m可着色的 ...

  5. 非maven项目下载maven的jar

    很多时候我们需要jar,可惜项目不是maven的,但是我们只有一个maven的坐标,那怎么办? 比如: <dependencies> <dependency> <grou ...

  6. bzoj 3328 PYXFIB —— 单位根反演

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3328 单位根反演,主要用到了 \( [k|n] = \frac{1}{k} \sum\lim ...

  7. phpstorm下载和破解

    http://idea.qinxi1992.cn/ 官网下载对应版本,在下面进行破解! storm官网:https://www.jetbrains.com/phpstorm/ 破解网址  :http: ...

  8. 如何隐藏掉Nginx的版本号

    最近新学习了一个命令curl,里面有一个参数-I可以查看到网站使用的是哪种服务器,比如: zhangxiaoliudeMacBook-Pro-2:~ zhangxiaoliu$ curl -I htt ...

  9. windows任务管理器中的工作设置内存,内存专用工作集,提交大小详解

    虽然是中文字,但是理解起来还是很困难,什么叫工作设置内存,什么叫内存专用工作集,什么叫提交大小,区别是什么,让人看了一头雾水. 通俗的讲工作设置内存是程序占用的物理内存(包含与其他程序共享的一部分), ...

  10. Python函数(六)-嵌套函数

    嵌套函数就是在一个函数里再嵌套一个或多个函数 # -*- coding:utf-8 -*- __author__ = "MuT6 Sch01aR" def First(): pri ...