牛客练习赛22-E.简单数据结构1(扩展欧拉定理降幂 +树状数组)
链接:E.简单数据结构1
题意:
对一个数p取log(p)次的欧拉函数等于1,故可将操作2的复杂度降到log(p),可以直接求解。用树状数组的小技巧,可以在log的时间直接求出当前的a[i]。具体见代码。
#include <bits/stdc++.h>
using namespace std; const double EPS = 1e-;
const int INF = 0x3f3f3f3f;
const int mod = 1e9 + ;
const int maxn = 5e5 + ;
const int maxm = 2e7 + ;
int n, m;
long long a[maxn], bit[maxn];
int phi[maxm]; void Eul_list(int n) //欧拉函数_list
{
memset(phi, , sizeof(phi));
phi[] = ; for(int i = ; i < n; i++){
if(!phi[i]){
for(int j = i; j < n; j += i){
if(!phi[j]) phi[j] = j;
phi[j] = phi[j] / i * (i - );
}
}
}
} void add(int i, long long d)
{
while(i < maxn){
bit[i] += d;
i += -i & i;
}
} long long sum(int i)
{
long long ans = ;
while(i){
ans += bit[i];
i -= -i & i;
}
return ans;
} long long Mod(long long x, long long y) //欧拉定理的条件
{
return x < y ? x : x % y + y;
} long long pow_mod(long long x, long long n, long long mod)
{
long long ans = ;
x = Mod(x, mod);
while(n){
if(n & ) ans = Mod(ans * x, mod);
x = Mod(x * x, mod);
n >>= ;
}
return ans;
} long long dfs(int l, int r, int p)
{
long long val = sum(l);
if(l == r || p == ) return Mod(val, p); //降幂加速
return pow_mod(val, dfs(l + , r, phi[p]), p);
} int main()
{
scanf("%d%d", &n, &m);
for(int i = ; i <= n; i++){
scanf("%lld", &a[i]);
add(i, a[i] - a[i-]); //对i求前缀和及为a[i]
} Eul_list(maxm); int op, l, r, x;
while(m--){
scanf("%d%d%d%d", &op, &l, &r, &x);
if(op == ){
//只需要当前数时的更新技巧
add(l, x);
add(r + , -x);
}
else printf("%lld\n", dfs(l, r, x) % x);
} return ;
}
牛客练习赛22-E.简单数据结构1(扩展欧拉定理降幂 +树状数组)的更多相关文章
- 牛客练习赛7 E 珂朵莉的数列(树状数组+爆long long解决方法)
https://www.nowcoder.com/acm/contest/38/E 题意: 思路: 树状数组维护.从大佬那里学习了如何处理爆long long的方法. #include<iost ...
- 牛客网多校第5场 H subseq 【树状数组+离散化】
题目:戳这里 学习博客:戳这里 题意:给n个数为a1~an,找到字典序第k小的序列,输出该序列所有数所在位置. 解题思路:先把所有序列预处理出来,方法是设一个数组为dp,dp[i]表示以i为开头的序列 ...
- 牛客网多校第5场 I vcd 【树状数组+离散化处理】【非原创】
题目:戳这里 学习博客:戳这里 作者:阿狸是狐狸啦 n个点,一个点集S是好的,当且仅当对于他的每个子集T,存在一个右边无限延长的矩形,使的这个矩形包含了T,但是和S-T没有交集. 求有多少个这种集合. ...
- 牛客练习赛22 C 简单瞎搞题
//位运算 // & 都是1 才是 1 // | 都是0 才是0 // ^ 不一样才是1 #include <iostream> #include <cstdio> # ...
- BZOJ_2683_简单题&&BZOJ_1176_[Balkan2007]Mokia_CDQ分治+树状数组
BZOJ_2683_简单题&&BZOJ_1176_[Balkan2007]Mokia_CDQ分治+树状数组 Description 维护一个W*W的矩阵,初始值均为S.每次操作可以增加 ...
- 牛客练习赛53 E-老瞎眼pk小鲜肉(思维+线段树+离线)
前言 听说是线段树离线查询?? 做题做着做着慢慢对离线操作有点感觉了,不过也还没参透,等再做些题目再来讨论离线.在线操作. 这题赛后看代码发现有人用的树状数组,$tql$.当然能用树状数组写的线段树也 ...
- 牛客练习赛22 简单瞎搞题(bitset优化dp)
一共有 n个数,第 i 个数是 xi xi 可以取 [li , ri] 中任意的一个值. 设 ,求 S 种类数. 输入描述: 第一行一个数 n. 然后 n 行,每行两个数表示 li,ri. 输出 ...
- 牛客练习赛43-F(简单容斥)
题目链接:https://ac.nowcoder.com/acm/contest/548/F 题意:简化题意之后就是求[1,n]中不能被[2,m]中的数整除的数的个数. 思路:简单容斥题,求[1,n] ...
- 【牛客练习赛22 C】
https://www.nowcoder.com/acm/contest/132/C 题目大意:在n个区间中取出n个数,相加的和一共会出现多少种结果. 题目分析:对于这种挑选数字相加,由于每一步不同的 ...
随机推荐
- EK算法应用,构图(POJ1149)
题目链接:http://poj.org/problem?id=1149 题意中有一点要注意,否则构图就会有问题,每个顾客走后,被打开过的那些猪圈中的猪都可以被任意的调换到其他开着的猪圈中. 这里的构图 ...
- 【[SCOI2015]小凸玩矩阵】
题目 第\(k\)大显然没有什么办法直接求,于是多一个\(log\)来二分一波 现在的问题变成了判断一个\(mid\)是否能成为第\(k\)大 这还是一个非常经典的棋盘模型,于是经典的做法就是转化成二 ...
- IntelliJ IDEA环境使用
转:https://blog.csdn.net/zwj1030711290/article/details/80673482 https://blog.csdn.net/zrc199021/artic ...
- 1.5配置NetBackup数据库备份策略(nbu策略catalog)
1.5配置NetBackup数据库备份策略 建议定期备份NetBackup的索引数据库Catalog,以确保故障时的有效恢复.从Javaconsole可以进入备份NetBackup内部数据库配置窗口, ...
- python :编写装饰器
简单装饰器 def log_time(func): # 此函数的作用时接受被修饰的函数的引用test,然后被内部函数使用 def make_decorater(): print('现在开始装饰') f ...
- django批量form表单处理
1.应用说明 一般在表单信息录入中,如果存在许多重复提交的信息,我们就需要进行批量处理,比如学生信息的批量录入. 这里一种方式就是使用xlrd模块处理,把学生信息录入到系统内 另外一种方式就是采用我们 ...
- java斗地主扑克 扑克牌 洗牌 发牌 Collection 集合练习
package com.swift.poker; import java.util.ArrayList; import java.util.Collections; /*训练考核知识点:Collect ...
- JQuery发起ajax请求,并在页面动态的添加元素
页面html代码: <li> <div class="coll-tit"><span class="coll-icon">& ...
- JavaWeb各大组件生命周期
JavaWeb各大组件生命周期 servlet生命周期 服务器打开:在第一次请求时实例化与初始化:然后进行服务:最后服务器关闭销毁 Cookie生命周期:存储在客户端 如果不设置过期时间,则表示这个c ...
- ORM初级实战简单的数据库交互
setting.py中: """ Django settings for untitled3 project. Generated by 'django-admin st ...