这道题列出不等式后明显是会溢出的大数,但是没有必要写高精度,直接两边取对数(这是很简明实用的处理技巧)得:

log2(n!)=log2(n)+log2(n-1)+...+log2(1)<=log2(2k-1)<k

其中k是第y年计算机的位数。

注意C++中log(n)是以e为底的对数,log10(n)是以10为底的对数,若要计算loga(b),用换底公式loga(b)=logx(b)/logx(a)即可。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<list>
#include<deque>
#include<vector>
#include<algorithm>
#include<stack>
#include<queue>
#include<cctype>
#include<sstream>
using namespace std;
#define pii pair<int,int>
#define LL long long int
const double eps=1e-;
const int INF=;
const int maxn=; int n; int main()
{
//freopen("in2.txt","r",stdin);
//freopen("out.txt","w",stdout);
while(scanf("%d",&n)==&&n)
{
int t=(n-)/+;
int k=(<<t);
//cout<<k<<endl;
double i=;
double r=;
for(;r<(double)k;i++)
{
//cout<<'i'<<' '<<i<<endl;
//cout<<log(i)/log(2)<<endl;
r+=log(i)/log(2.0);
//cout<<r<<endl;
}
cout<<i-<<endl;
}
//fclose(stdin);
//fclose(stdout);
return ;
}

poj2661 Factstone Benchmark(大数不等式同取对数)的更多相关文章

  1. uva 10916 Factstone Benchmark(对数函数的活用)

    Factstone Benchmark Amtel has announced that it will release a 128-bit computer chip by 2010, a 256- ...

  2. Factstone Benchmark

    [问题描述] Amtel已经宣布,到2010年,它将发行128位计算机芯片:到2020年,它将发行256位计算机:等等,Amtel坚持每持续十年将其字大小翻一番的战略.(Amtel于2000年发行了6 ...

  3. Codeforces Round #260 (Div. 2) A B C 水 找规律(大数对小数取模) dp

    A. Laptops time limit per test 1 second memory limit per test 256 megabytes input standard input out ...

  4. poj 2661 Factstone Benchmark

    /** 大意: 求m!用2进制表示有多少位 m! = 2^n 两边同时取对数 log2(m!) = n 即 log2(1) + log2(2)+log2(3)+log2(4)...+log2(m) = ...

  5. 【每日一题】 UVA - 11809 Floating-Point Numbers 阅读题+取对数处理爆double

    https://cn.vjudge.net/problem/UVA-11809 题意:很长orz 题解:算一下输入范围,发现用double是读不进来的,在这里wa了半天,(double 1e300  ...

  6. hdu 1568 (log取对数 / Fib数通项公式)

    hdu 1568 (log取对数 / Fib数通项公式) 2007年到来了.经过2006年一年的修炼,数学神童zouyu终于把0到100000000的Fibonacci数列 (f[0]=0,f[1]= ...

  7. 【取对数】【哈希】Petrozavodsk Winter Training Camp 2018 Day 1: Jagiellonian U Contest, Tuesday, January 30, 2018 Problem J. Bobby Tables

    题意:给你一个大整数X的素因子分解形式,每个因子不超过m.问你能否找到两个数n,k,k<=n<=m,使得C(n,k)=X. 不妨取对数,把乘法转换成加法.枚举n,然后去找最大的k(< ...

  8. HDU3666 THE MATRIX PROBLEM (差分约束+取对数去系数)(对退出情况存疑)

    You have been given a matrix C N*M, each element E of C N*M is positive and no more than 1000, The p ...

  9. Factstone Benchmark(数学)

    http://poj.org/problem?id=2661 题意:Amtel在1960年发行了4位计算机,并实行每十年位数翻一番的策略,将最大整数n作为改变的等级,其中n!表示计算机的无符号整数(n ...

随机推荐

  1. Smart pointer 智能指针小总结

    Smart pointer line 58之后smart pointer里的计数已经是0,所以会真正释放它引用的对象,调用被引用对象的析构函数.如果继续用指针访问,会出现如下图的内存访问异常.所以说如 ...

  2. usermod命令

    usermod 功能: 修改用户 常用参数:-c    账号说明-d    账号家目录-e    密码失效日期-g    主用户组GID-G    次用户组GID-l    账号名称-s    she ...

  3. 批处理--复制,解压文件,goto,nul

    rem 复制文件 copy "D:\xxxx" "C:\xxxx" rem 复制文件夹 xcopy "D:\xxxx" "C:\x ...

  4. 6.1-AliasRegistry

    AliasRegistry //AliasRegistry package org.springframework.core; /** * Common interface for managing ...

  5. iOS和Android后台机制对比

    转自:http://blog.csdn.net/zsch591488385/article/details/27232881 一.iOS的“伪后台”程序 首先,先了解一下ios 中所谓的「后台进程」到 ...

  6. BZOJXXXX: [IOI2000]邮局——四边形不等式优化初探

    貌似$BZOJ$上并没有这个题... 是嫌这个题水了么... 还是要氪金权限号??? 这里附上洛谷的题面:洛谷P4767 [IOI2000]邮局 题目描述 高速公路旁边有一些村庄.高速公路表示为整数轴 ...

  7. 我的Android进阶之旅------> Android在TextView中显示图片方法

    面试题:请说出Android SDK支持哪些方式显示富文本信息(不同颜色.大小.并包含图像的文本信息),并简要说明实现方法. 答案:Android SDK支持如下显示富文本信息的方式. 1.使用Tex ...

  8. python数据分析之:时间序列二

    将Timestamp转换为Period 通过使用to_period方法,可以将由时间戳索引的Series和DataFrame对象转换为以时期索引 rng=pd.date_range('1/1/2000 ...

  9. Java的接口和抽象类(转发:http://www.importnew.com/18780.html)

    深入理解Java的接口和抽象类 对于面向对象编程来说,抽象是它的一大特征之一.在Java中,可以通过两种形式来体现OOP的抽象:接口和抽象类.这两者有太多相似的地方,又有太多不同的地方.很多人在初学的 ...

  10. sin6_addr打印:string to sockaddr_in6 and sockaddr_in6 to string

    函式原型: #include <arpa/inet.h> const char *inet_ntop(int af, const void *src, char *dst, socklen ...