题意

题目链接

$Q$组询问,每次给出$[x, y]$,定义$f(x, y)$为计算$(x, y)$的最大公约数需要的步数,设$i \leqslant x, j \leqslant y$,求$max(f(i, j))$,以及$max(f(i, j))$不同的数对$(i, j)$的个数

Sol

结论题Orz

设$f(x, y)$表示$(x, y)$辗转相除需要的步数,$fib(i)$表示第$i$个斐波那契数

常识:$f(fib[i], fib[i+1]) = i$。

定义一个数对是“好的”,当且仅当对于$(x, y)$,不存在更小的$x', y'$使得$f(x', y') > f(x, y)$

显然我们需要统计的数对一定是好的数对

定义一个数对是“优秀的”,当且仅当对于$(x, y)$,若$f(x, y) = k$, 满足$x, y \leqslant fib[k+2] + fib[k-1]$

结论!:一个好的数对辗转相除一次后一定是优秀的数对!

证明可以用反证法,也就是我先假设一个$f(a, b) = i$是好的,但是得到的数对$(x, y)$满足$y > fib[k+2] + fib[k-1]$

但是这样我们会得到一个$x' = f[i+2], y' = f[i+2]$满足$f(x', y')>f(a, b)$,所以不成立

那么现在要做的就是求“优秀的”数对的个数。

考虑直接用欧几里得算法的定义递推即可

不过代码是真·难写啊,去网上copy一份吧。。。

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<vector>
#define Pair pair<LL, LL>
#define MP(x, y) make_pair(x, y)
#define fi first
#define se second
#define LL long long
#define int long long
using namespace std;
const int MAXN = 1e6 + , B = , mod = 1e9 + ;
inline LL read() {
char c = getchar(); LL x = , f = ;
while(c < '' || c > '') {if(c == '-') f = -; c = getchar();}
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x * f;
}
vector<Pair> v[B + ];
LL f[B + ];
void Pre() {
f[] = f[] = ;
for(int i = ; i <= B; i++) f[i] = f[i - ] + f[i - ];
v[].push_back(MP(, )); v[].push_back(MP(, )); v[].push_back(MP(, ));
for(int i = ; i <= B - ; i++) {
for(int j = ; j < v[i].size(); j++) {
LL x = v[i][j].fi, y = v[i][j].se;
LL tmp = x; x = y; y = tmp + y;
while(y <= f[i + ] + f[i - ]) v[i + ].push_back(MP(x, y)), y += x;
}
}
}
main() {
// freopen("1.in", "r", stdin);
Pre();
int Q = read();
while(Q--) {
LL x = read(), y = read(), K;
if(x > y) swap(x, y);
for(K = ; f[K + ] <= x && f[K + ] <= y; K++);
cout << K << " ";
if(K == ) {cout << x * y % mod << endl; continue;}
LL ans = ;
for(int i = ; i < v[K - ].size(); i++) {
LL a = v[K - ][i].fi, b = v[K - ][i].se;
// printf("%I64d %I64d\n", a, b);
if(b <= x) ans += (y - a) / b % mod;
if(b <= y) ans += (x - a) / b % mod;
//if(a + b <= x && b <= y) ans++;
//if(a + b <= y && a <= x) ans++;
ans %= mod;
}
cout << ans % mod<< endl;
}
return ;
}

agc015F - Kenus the Ancient Greek(结论题)的更多相关文章

  1. agc015F Kenus the Ancient Greek

    题意: 有$Q$次询问,每次给定$X_i$和$Y_i$,求对于$1\leq x \leq X_i , 1 \leq y \leq Y_i$,$(x,y)$进行辗转相除法的步数的最大值以及取到最大值的方 ...

  2. [AT2384] [agc015_f] Kenus the Ancient Greek

    题目链接 AtCoder:https://agc015.contest.atcoder.jp/tasks/agc015_f 洛谷:https://www.luogu.org/problemnew/sh ...

  3. Atcoder Grand Contest 015 F - Kenus the Ancient Greek(找性质+乱搞)

    洛谷题面传送门 & Atcoder 题面传送门 一道难度 Au 的 AGC F,虽然看过题解之后感觉并不复杂,但放在现场确实挺有挑战性的. 首先第一问很简单,只要每次尽量让"辗转相除 ...

  4. [codevs5578][咸鱼]tarjan/结论题

    5578 咸鱼  时间限制: 1 s  空间限制: 128000 KB   题目描述 Description 在广袤的正方形土地上有n条水平的河流和m条垂直的河流,发达的咸鱼家族在m*n个河流交叉点都 ...

  5. BZOJ_1367_[Baltic2004]sequence_结论题+可并堆

    BZOJ_1367_[Baltic2004]sequence_结论题+可并堆 Description Input Output 一个整数R Sample Input 7 9 4 8 20 14 15 ...

  6. [BZOJ3609][Heoi2014]人人尽说江南好 结论题

    Description 小 Z 是一个不折不扣的 ZRP(Zealot Round-game Player,回合制游戏狂热玩家), 最近他 想起了小时候在江南玩过的一个游戏.     在过去,人们是要 ...

  7. 【uoj#282】长度测量鸡 结论题

    题目描述 给出一个长度为 $\frac{n(n+1)}2$ 的直尺,要在 $0$ 和 $\frac{n(n+1)}2$ 之间选择 $n-1$ 个刻度,使得 $1\sim \frac{n(n+1)}2$ ...

  8. 【uoj#175】新年的网警 结论题+Hash

    题目描述 给出一张 $n$ 个点 $m$ 条边的无向连通图,每条边的边权为1.对于每个点 $i$ ,问是否存在另一个点 $j$ ,使得对于任意一个不为 $i$ 或 $j$ 的点 $k$ ,$i$ 到 ...

  9. 【uoj#180】[UR #12]实验室外的攻防战 结论题+树状数组

    题目描述 给出两个长度为 $n$ 的排列 $A$ 和 $B$ ,如果 $A_i>A_{i+1}$ 则可以交换 $A_i$ 和 $A_{i+1}$ .问是否能将 $A$ 交换成 $B$ . 输入 ...

随机推荐

  1. WM学习之——火山

    效果图 节点图如下: 说明: Radial grad--锥形建立节点 Perlin Noise--基础地形创建节点 Combiner--联合节点 Clamp--范围/高度控制节点 Bias/Gain- ...

  2. CountDownLatch分析

    1 什么是CountDownLatch呢? 先看看官网的定义 :一种同步帮助,允许一个或多个线程等待,直到在其他线程中执行的一组操作完成. 现在由我来解释什么是CountDownLatch吧:比如说我 ...

  3. hadoop2.6.0完全分布式部署

    这里是hadoop最小的配置,也就是修改最少量的东西让hadoop跑起来. 系统是 Centos6.7 64位, hadoop是2.6.0,虚拟机是VMWare WorkStation 假设虚拟机启动 ...

  4. 朴素贝叶斯算法分析及java 实现

    1. 先引入一个简单的例子 出处:http://www.ruanyifeng.com/blog/2013/12/naive_bayes_classifier.html 一.病人分类的例子 让我从一个例 ...

  5. [亂數] <細說> C/C++ 亂數基本使用與常見問題

    陸陸續續寫了 EA  一.二年,以前亂數引導文回頭看時才發現,怎麼有這麼多細節的錯誤.沒系統. 這篇文章主要引導初學者使用亂數,同時附上常被翻出來討論的議題,C/C++適用,唯以 C 語言撰之. 也由 ...

  6. 39、生鲜电商平台-redis缓存在商品中的设计与架构

    说明:Java开源生鲜电商平台-redis缓存在商品中的设计与架构. 1. 各种计数,商品维度计数和用户维度计数 说起电商,肯定离不开商品,而附带商品有各种计数(喜欢数,评论数,鉴定数,浏览数,etc ...

  7. SQL Server 查询分析器提供的所有快捷方式(快捷键)

    SQL Server程序员经常要在SSMS(SQL Server Management Studio)或查询分析器(2000以前)中编写T-SQL代码.以下几个技巧,可以提升工作效率. 以下说明以SS ...

  8. 测试merge效率

    测试说明: MERGE是oracle提供的一种特殊的sql语法,非常适用于数据同步场景,即: (把A表数据插到B表,如果B表存在相同主键的记录则使用A表数据对B表进行更新) 数据同步的常规做法是先尝试 ...

  9. PS2018学习笔记(25-29节)

    25-亮度与色阶看懂直方图-part1 # 本节知识点: 灰度模式 明暗对比 明度/对比度命令 直方图 色阶命令 调整图层 # 本节段落表: 了解亮度对比 灰度模式观察明暗 明度/对比度命令 认知对比 ...

  10. 交叉编译Spice-gtk

    Fedora环境 编译环境 操作系统: 64位 Fedora23 下载源文件 spice-gtk.spice-protocol 安装依赖 $ sudo yum install -y dh-autore ...