bzoj3140: [Hnoi2013]消毒(二分图)
题目描述
最近在生物实验室工作的小T遇到了大麻烦。 由于实验室最近升级的缘故,他的分格实验皿是一个长方体,其尺寸为a*b*c,a、b、c 均为正整数。为了实验的方便,它被划分为a*b*c个单位立方体区域,每个单位立方体尺寸为1*1*1。用(i,j,k)标识一个单位立方体,1 <=i<=a,1<=j<=b,1<=k<=c。这个实验皿已经很久没有人用了,现在,小T被导师要求将其中一些单位立方体区域进 行消毒操作(每个区域可以被重复消毒)。
而由于严格的实验要求,他被要求使用一种特定 的F试剂来进行消毒。 这种F试剂特别奇怪,每次对尺寸为x*y*z的长方体区域(它由x*y*z个单位立方体组 成)进行消毒时,只需要使用min{x,y,z}单位的F试剂。F试剂的价格不菲,这可难倒了小 T。
现在请你告诉他,最少要用多少单位的F试剂。(注:min{x,y,z}表示x、y、z中的最小 者。)
输入输出格式
输入格式:
第一行是一个正整数D,表示数据组数。接下来是D组数据,每组数据开头是三个数a,b,c表示实验皿的尺寸。接下来会出现a个b 行c列的用空格隔开的01矩阵,0表示对应的单位立方体不要求消毒,1表示对应的单位立方体需要消毒;例如,如果第1个01矩阵的第2行第3列为1,则表示单位立方体(1,2,3)需要被消毒。输入保证满足a*b*c<=5000,T<=3。
输出格式:
仅包含D行,每行一个整数,表示对应实验皿最少要用多少单位 的F试剂。
输入输出样例
1
4 4 4
1 0 1 1
0 0 1 1
0 0 0 0
0 0 0 0
0 0 1 1
1 0 1 1
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0
3
说明
对于区域(1,1,3)-(2,2,4)和(1,1,1)-(4,4,1)消毒,分别花费2个单位和1个单位的F试剂。
题解
我们先来考虑一下二维的情况
对于一整块需要染色的部分,我们可以选择一条一条地去染色(也就是说使每一次的最小值为$1$,另一个就可以随便取了),那么答案肯定不会比直接一块染更差
比方说$(1,1)$到$(2,3)$都有,你直接整块染或者每次染一行实际上答案是一样的
所以我们对每一个点的$x->y$连一条边,然后要求一个最小点覆盖,等于最大匹配
然后怎么考虑三维的情况?我们可不会三分图,那个可没有多项式解法
考虑到$a,b,c$中最小的不会超过17(因为$17^3=4913$),所以我们可以考虑枚举这一维,枚举每一层是否直接切掉
剩下没有切的层已经是一个二维的情况了,可以直接用二分图跑
ps:我抄借鉴代码的时候有很多细节问题不明白,比如二分图为什么可以不用拆成左右两边的点,可以在一排点里直接连。后来发现是因为右边的点有用的只有它与哪个左部点匹配,所以只需要一排点也可以记录这些信息(因为我二分图根本没学过所以理解起来很吃力……以前都是直接用网络流跑的从来没去了解过匈牙利……)
//minamoto
#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#define inf 0x3f3f3f3f
using namespace std;
#define getc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
char buf[<<],*p1=buf,*p2=buf;
template<class T>inline bool cmin(T&a,const T&b){return a>b?a=b,:;}
inline int read(){
#define num ch-'0'
char ch;bool flag=;int res;
while(!isdigit(ch=getc()))
(ch=='-')&&(flag=true);
for(res=num;isdigit(ch=getc());res=res*+num);
(flag)&&(res=-res);
#undef num
return res;
}
const int N=;
int head[N],Next[N],ver[N],edge[N],Pre[N],vis[N],tot;
int sx[][N],a,b,c,ans,st[N],num,mn;
inline void add(int u,int v){
ver[++tot]=v,Next[tot]=head[u],head[u]=tot;
}
bool dfs(int u){
for(int i=head[u];i;i=Next[i]){
int v=ver[i];
if(!vis[v]){
vis[v]=true;
if(!Pre[v]||dfs(Pre[v])){
Pre[v]=u;return true;
}
}
}
return false;
}
void work(int x){
memset(head,,sizeof(head));
memset(Pre,,sizeof(Pre));
tot=;
int tmp=;
for(int i=;i<a;++i){
if(x&(<<i)) st[i+]=false,++tmp;
else st[i+]=true;
}
for(int i=;i<=num;++i)
if(st[sx[][i]]) add(sx[][i],sx[][i]);
for(int i=;i<=b;++i){
for(int j=;j<=c;++j) vis[j]=false;
if(dfs(i)) ++tmp;
}
cmin(ans,tmp);
}
int main(){
int T=read();
while(T--){
num=,ans=inf;
a=read(),b=read(),c=read();
mn=min(a,min(b,c));
for(int i=;i<=a;++i)
for(int j=;j<=b;++j)
for(int k=;k<=c;++k){
int u=read();
if(!u) continue;
sx[][++num]=i;
sx[][num]=j;
sx[][num]=k;
}
if(mn==b) swap(a,b),swap(sx[],sx[]);
else if(mn==c) swap(a,c),swap(sx[],sx[]);
for(int i=;i<(<<a);++i) work(i);
printf("%d\n",ans);
}
return ;
}
bzoj3140: [Hnoi2013]消毒(二分图)的更多相关文章
- [BZOJ3140][HNOI2013]消毒(二分图最小点覆盖)
3140: [Hnoi2013]消毒 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1621 Solved: 676[Submit][Status] ...
- [BZOJ3140][HNOI2013]消毒:二分图匹配
分析 假如实验皿是二维的,那么这道题便是一个二分图最小点覆盖问题,可以转化为二分图最大匹配问题,使用匈牙利算法解决. 考虑如何扩展到三维,首先我们发现一次操作的代价为\(min(x,y,z)\).不难 ...
- bzoj3140: [Hnoi2013]消毒
Description 最近在生物实验室工作的小T遇到了大麻烦. 由于实验室最近升级的缘故,他的分格实验皿是一个长方体,其尺寸为a*b*c,a.b.c 均为正整数.为了实验的方便,它被划分为a*b*c ...
- [luogu3231 HNOI2013] 消毒 (二分图最小点覆盖)
传送门 Description 最近在生物实验室工作的小T遇到了大麻烦. 由于实验室最近升级的缘故,他的分格实验皿是一个长方体,其尺寸为abc,a.b.c 均为正整数.为了实验的方便,它被划分为abc ...
- BZOJ.3140.[HNOI2013]消毒(二分图匹配 匈牙利)
题目链接 不难想到每次一定是切一片. 如果是平面,很容易想到直接做二分图匹配.对于3维的? 可以发现min(a,b,c)的最大值只有\(\sqrt[3]{n}≈17\),我们暴力枚举这一最小值代表的是 ...
- bzoj千题计划295:bzoj3140: [Hnoi2013]消毒
http://www.lydsy.com/JudgeOnline/problem.php?id=3140 如果只有两维,那就是二分图最小点覆盖 现在是三维,但是a*b*c<=5000,说明最小的 ...
- [HNOI2013] 消毒 - 二分图匹配
容易发现 \(a,b,c\) 中至少有一个 \(\leq 17\) 不妨将其调剂为 \(a\),那么我们可以暴力枚举哪些 \(x\) 片片要被直接削掉,剩下的拍扁成二维情况 二维时,如果有一个格子是 ...
- 【BZOJ3140】消毒(二分图匹配)
[BZOJ3140]消毒(二分图匹配) 题面 Description 最近在生物实验室工作的小T遇到了大麻烦. 由于实验室最近升级的缘故,他的分格实验皿是一个长方体,其尺寸为abc,a.b.c 均为正 ...
- P3231 [HNOI2013]消毒
P3231 [HNOI2013]消毒 二维覆盖我们已经很熟悉了 扩展到三维,枚举其中较小的一维,这里定义为$a$ 以$a$为关键字状压,$1$表示该面全选 剩下的面和二维覆盖一样二分图匹配 如果还没接 ...
随机推荐
- Day2-VIM(四):修改
字符替换 r 单个字符替换 R 连续替换 - 更改大小写 很简单,多试试就行了 tips:4-更改连续4个字符的大小写,很有意思 单词修改 cw 从光标处修改到单词结尾 cb 从光标处修改到单词开头 ...
- 非常不错的LTE架构讲解
<LTE系统协议架构---通俗易懂超经典> <3GPP协议导读> <3GPP协议36211-850中文翻译> <LTE全套协议汇总> <NB-IO ...
- Spring之3:BeanFactory、ApplicationContext、ApplicationContextAware区别
在Spring中系统已经为用户提供了许多已经定义好的容器实现,而不需要开发人员事必躬亲.相比那些简单拓展BeanFactory的基本IoC容器,开发人员常用的ApplicationContext除了能 ...
- DCloud-流应用:杂项
ylbtech-DCloud-流应用:杂项 1.返回顶部 2.返回顶部 3.返回顶部 4.返回顶部 5.返回顶部 6.返回顶部 7.返回顶部 8.返回顶部 9.返回 ...
- jstl 判断 null
<c:if test="${not empty object }"> ${object}不为空 </c:if>
- 第2章 构建springboot工程 2-2 使用Spring官方STS搭建SpringBoot工程
项目名demo,SpringBoot的版本2.0.6 删了/demo/mvnw和/demo/mvnw.cmd.static文件夹包含静态文件,比如CSS.JS.templates文件夹是放模板的,Sp ...
- day70-oracle 13-数据字典
实际上数据字典它就是表.这种表比较特殊,给它取个名字叫做数据字典.既然是表的话,它就是要存数据的.它存的是这些数据:用户有哪些权限,用户创建了哪些表,用户能够访问哪些表,这种信息跟员工表.部门表没有关 ...
- [转]PHP 面试问哪些问题可以比较准确的反映出应聘者的开发水平?
基础题 场景: 你入职了一家新公司. 上班第一天,接待人给你安排好了座位,然后拉过来一台没拆封的新电脑. 你把电脑连接好之后,按下电源.... 好吧,这真是一台新电脑,里边竟然内置了个DOS系统!! ...
- unity3D中制作天空盒(Skyboxes)
1.首先制作图片,需要把图片用Ps制作成psd格式,制作6张 2.把6个psd文件导入工程目录 Assets下, 3.在project属性列表中选中Assets,单击鼠标右键选择 Create —&g ...
- R: 字符串处理包:stringr
本文摘自: http://blog.fens.me/r-stringr/ 1. stringr介绍 stringr包被定义为一致的.简单易用的字符串工具集.所有的函数和参数定义都具有一致性,比如,用 ...