收获:

  1、流量为0的边可以不加入。

  2、最小割方案要与决策方案对应。

 #include <cstdio>
#include <cmath>
#include <cstring>
#include <vector>
#define min(a,b) ((a)<(b)?(a):(b))
#define oo 0x3f3f3f3f
#define N 610
using namespace std; typedef long long dnt;
struct Edge {
int u, v, f;
Edge( int u, int v, int f ):u(u),v(v),f(f){}
};
struct Dinic {
int src, dst;
vector<Edge> edge;
vector<int> g[N];
int dep[N], cur[N], qu[N], bg, ed;
void init( int src, int dst ) {
this->src = src;
this->dst = dst;
}
void adde( int u, int v, int f ) {
g[u].push_back( edge.size() );
edge.push_back( Edge(u,v,f) );
g[v].push_back( edge.size() );
edge.push_back( Edge(v,u,) );
}
bool bfs() {
memset( dep, , sizeof(dep) );
qu[bg=ed=] = src;
dep[src] = ;
while( bg<=ed ) {
int u=qu[bg++];
for( int t=; t<g[u].size(); t++ ) {
Edge &e = edge[g[u][t]];
if( e.f && !dep[e.v] ) {
dep[e.v] = dep[e.u] + ;
qu[++ed] = e.v;
}
}
}
return dep[dst];
}
int dfs( int u, int a ) {
if( u==dst || a== ) return a;
int remain=a, past=, na;
for( int &t=cur[u]; t<g[u].size(); t++ ) {
Edge &e=edge[g[u][t]];
Edge &ve=edge[g[u][t]^];
if( e.f && dep[e.v]==dep[e.u]+ && (na=dfs(e.v,min(remain,e.f))) ) {
remain -= na;
past += na;
e.f -= na;
ve.f += na;
if( !remain ) break;
}
}
return past;
}
int maxflow() {
int rt=;
while( bfs() ) {
memset( cur, , sizeof(cur) );
rt += dfs(src,oo);
}
return rt;
}
}D; int n, m;
int src, dst; int main() {
scanf( "%d%d", &n, &m );
D.init( src=, dst=n+ );
for( int i=,v; i<=n; i++ ) {
scanf( "%d", &v );
if( !v ) D.adde( src, i, );
else D.adde( i, dst, );
}
for( int i=; i<=m; i++ ) {
int u, v;
scanf( "%d%d", &u, &v );
D.adde( u, v, );
D.adde( v, u, );
}
printf( "%d\n", D.maxflow() );
}

bzoj 1934 最小割的更多相关文章

  1. bzoj 1934最小割

    比较显然的最小割的题,增加节点source,sink,对于所有选1的人我们可以(source,i,1),选0的人我们可以(i,sink,1),然后对于好朋友我们可以连接(i,j,1)(j,i,1),然 ...

  2. BZOJ 1412 & 最小割

    什么时候ZJ省选再现一次这么良心的题吧... 题意: 在一个染色的格子画分割线,使其不想连,求最少的线段 SOL: 裸裸的最小割.题目要求两种颜色不想连,我们把他分到两个集合,也就是把所有相连的边切断 ...

  3. BZOJ 1797 最小割

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1797 题意:给出一个有向图,每条边有流量,给出源点汇点s.t.对于每条边,询问:(1)是 ...

  4. BZOJ 2229 最小割

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2229 题意:给定一个带权无向图.若干询问,每个询问回答有多少点对(s,t)满足s和t的最 ...

  5. bzoj 1497 最小割模型

    我们可以对于消费和盈利的点建立二分图,开始答案为所有的盈利和, 那么源向消费的点连边,流量为消费值,盈利向汇连边,流量为盈利值 中间盈利对应的消费连边,流量为INF,那么我们求这张图的最小割,用 开始 ...

  6. bzoj 3996 最小割

    公式推出来后想了半天没思路,居然A是01矩阵..... 如果一个问题是求最值,并那么尝试先将所有可能收益加起来,然后矛盾部分能否用最小割表达(本题有两个矛盾,第一个是选还是不选,第二个是i,j有一个不 ...

  7. bzoj 1497 最小割

    思路:最小割好难想啊,根本想不到.. S -> 用户群 = c[ i ] 基站 -> T = p[ i ] 用户群 -> a[ i ] = inf 用户群 -> b[ i ] ...

  8. BZOJ 1797 最小割(最小割割边唯一性判定)

    问题一:是否存在一个最小代价路径切断方案,其中该道路被切断? 问题二:是否对任何一个最小代价路径切断方案,都有该道路被切断? 现在请你回答这两个问题. 最小割唯一性判定 jcvb: 在残余网络上跑ta ...

  9. BZOJ - 1497 最小割应用

    题意:基站耗费成本,用户获得利益(前提是投入成本),求最大获利 最小割的简单应用,所有可能的收益-(消耗的成本/失去的收益),无穷大边表示冲突,最小割求括号内的范围即可 #include<ios ...

随机推荐

  1. Html5使用history对象history.pushState()和history.replaceState()方法添加和修改浏览历史记录

    根据网上参考自己做个笔记:参考网址:http://javascript.ruanyifeng.com/bom/history.html history.pushState() HTML5为histor ...

  2. ispoweroftwo 判断2的次幂

    首先结果是: public bool IsPowerOfTwo(int n) { if(n<1) return false;//2的次幂一定大于0 return ((n & (n -1) ...

  3. eclipse安装阿里代码扫描插件

    1.首先打开eclipse软件,点击工具栏上的Help,选择Install New Soft进行安装新的插件. 2.进入插件安装界面,点击Add,弹出插件地址填写界面,也可以直接在市场上搜索关键字al ...

  4. ARC073E Ball Coloring

    Problem AtCoder Solution 把点映射至二维平面,问题就变成了给定 \(n\) 个点,可以把点对 \(y=x\) 对称,求覆盖所有点的最小矩形面积. 可以先把所有点放到 \(y=x ...

  5. Robotium测试套管理测试用例

    前提:已写好测试用例 新建个测试套MyTestSuite管理你需要跑的测试用例,或者将相同功能的测试用例归纳到一个测试套中 package com.robotium.test.testsuite; i ...

  6. 排序算法——Shell排序

    二.Shell排序 Shell排序也叫“缩减增量排序”(disminishing increment sort),基于插入排序进行. Shell建议的序列是一种常用但不理想的增量序列:1,...,N/ ...

  7. Token机制,防止web页面重复提交

    1.业务要求:页面的数据只能被点击提交一次 2.发生原因: 由于重复点击或者网络重发,或者nginx重发等情况会导致数据被重复提交 3.解决办法: 集群环境:采用token加redis(redis单线 ...

  8. 虚拟机 ubuntu 16.04

    下载地址:https://www.ubuntu.com/download/desktop 使用虚拟机直接安装

  9. bootstrap-fileinput上传文件的插件使用总结----编辑已成功上传过的图片

    http://plugins.krajee.com/file-plugin-methods-demo 具体操作 http://plugins.krajee.com/file-preview-manag ...

  10. HOG目标检测

    用HOG进行行人检测时,需要用训练好的支持向量机来对图片进行分类,在opencv中,支持向量机已经训练好,但自己来训练支持向量机才能更好的体会这一过程. 参考:http://blog.csdn.net ...