hdu 6311 欧拉回路
题意:求一个图(不一定联通)最小额外连接几条边,使得可以一笔画出来
大致做法
1.找出联通块
2.统计每一个连通块里面度数为奇数的点的个数,
有一个性质 一个图能够用一笔画出来,奇数点的个数不超过2个
if 奇数点的个数==0 或者 ==1 直接找欧拉回路
else 将除去前面两个奇数点外的奇数点依次相连 然后找欧拉回路
然后记录路径
#include <cstdio>
#include <cstring>
#include <queue>
#include <cmath>
#include <algorithm>
#include <set>
#include <iostream>
#include <map>
#include <stack>
#include <string>
#include <vector>
#define pi acos(-1.0)
#define eps 1e-9
#define fi first
#define se second
#define rtl rt<<1
#define rtr rt<<1|1
#define bug printf("******\n")
#define mem(a,b) memset(a,b,sizeof(a))
#define name2str(x) #x
#define fuck(x) cout<<#x" = "<<x<<endl
#define f(a) a*a
#define sf(n) scanf("%d", &n)
#define sff(a,b) scanf("%d %d", &a, &b)
#define sfff(a,b,c) scanf("%d %d %d", &a, &b, &c)
#define sffff(a,b,c,d) scanf("%d %d %d %d", &a, &b, &c, &d)
#define pf printf
#define FRE(i,a,b) for(i = a; i <= b; i++)
#define FREE(i,a,b) for(i = a; i >= b; i--)
#define FRL(i,a,b) for(i = a; i < b; i++)+
#define FRLL(i,a,b) for(i = a; i > b; i--)
#define FIN freopen("data.txt","r",stdin)
#define gcd(a,b) __gcd(a,b)
#define lowbit(x) x&-x
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
const int mod = 1e9 + ;
const int maxn = 2e5 + ;
const int INF = 0x3f3f3f3f;
const LL INFLL = 0x3f3f3f3f3f3f3f3fLL;
int n, m, ans, du[maxn], vis[maxn], vis1[maxn];
struct Edge {
int v, id;
};
vector<Edge>g[maxn];
vector<int>cnt, path[maxn];
void dfs ( int u ) {
vis[u] = ;
if ( du[u] & ) cnt.push_back ( u );
for ( int i = ; i < g[u].size() ; i++ ) {
if ( vis[g[u][i].v] ) continue;
dfs ( g[u][i].v );
}
}
void dfs1 ( int u ) {
for ( int i = ; i < g[u].size() ; i++ ) {
if ( vis1[abs ( g[u][i].id )] ) continue;
vis1[abs ( g[u][i].id )] = ;
dfs1 ( g[u][i].v );
if ( abs ( g[u][i].id ) > m ) ans++;
else path[ans].push_back ( -g[u][i].id );
//欧拉回路的路径是反的 所以要-号
}
}
int main() {
while ( ~sff ( n, m ) ) {
ans = ;
mem ( vis, ), mem ( vis1, );
for ( int i = ; i <= n ; i++ ) path[i].clear(), g[i].clear(), du[i] = ;
for ( int i = , u, v ; i <= m ; i++ ) {
sff ( u, v );
g[u].push_back ( {v, i} );
g[v].push_back ( {u, -i} );
du[u]++, du[v]++ ;
}
int num = m;
for ( int i = ; i <= n ; i++ ) {
if ( !vis[i] && du[i] ) {
cnt.clear();
dfs ( i );
ans++;
if ( cnt.size() == ) cnt.push_back ( i );
for ( int j = ; j < cnt.size() ; j += ) {
g[cnt[j]].push_back ( {cnt[j + ], ++num} );
g[cnt[j + ]].push_back ( {cnt[j], -num} );
}
dfs1 ( cnt[] );
}
}
printf ( "%d\n", ans );
for ( int i = ; i <= ans; i++ ) {
printf ( "%d", path[i].size() );
for ( int j = ; j < path[i].size() ; j++ ) printf ( " %d", path[i][j] );
printf ( "\n" );
}
}
return ;
}
hdu 6311 欧拉回路的更多相关文章
- HDU 6311 Cover (无向图最小路径覆盖)
HDU 6311 Cover (无向图最小路径覆盖) Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/ ...
- HDU - 6311:Cover(欧拉回路,最少的一笔画覆盖无向图)
The Wall has down and the King in the north has to send his soldiers to sentinel. The North can be r ...
- hdu 1116 欧拉回路+并查集
http://acm.hdu.edu.cn/showproblem.php?pid=1116 给你一些英文单词,判断所有单词能不能连成一串,类似成语接龙的意思.但是如果有多个重复的单词时,也必须满足这 ...
- HDU 1878 欧拉回路(判断欧拉回路)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1878 题目大意:欧拉回路是指不令笔离开纸面,可画过图中每条边仅一次,且可以回到起点的一条回路.现给定一 ...
- HDU 3018 欧拉回路
HDU - 3018 Ant Country consist of N towns.There are M roads connecting the towns. Ant Tony,together ...
- HDU 1878 欧拉回路
并查集水题. 一个图存在欧拉回路的判断条件: 无向图存在欧拉回路的充要条件 一个无向图存在欧拉回路,当且仅当该图所有顶点度数都是偶数且该图是连通图. 有向图存在欧拉回路的充要条件 一个有向图存在欧拉回 ...
- HDU 1878 欧拉回路 图论
解题报告:题目大意,给出一个无向图,判断图中是否存在欧拉回路. 判断一个无向图中是否有欧拉回路有一个充要条件,就是这个图中不存在奇度定点,然后还要判断的就是连通分支数是否为1,即这个图是不是连通的,这 ...
- HDU - 6311 Cover(无向图的最少路径边覆盖 欧拉路径)
题意 给个无向图,无重边和自环,问最少需要多少路径把边覆盖了.并输出相应路径 分析 首先联通块之间是独立的,对于一个联通块内,最少路径覆盖就是 max(1,度数为奇数点的个数/2).然后就是求欧拉路 ...
- HDU - 6311 Cover (欧拉路径)
题意:有最少用多少条边不重复的路径可以覆盖一个张无向图. 分析:对于一个连通块(单个点除外),如果奇度数点个数为 k,那么至少需要max{k/2,1} 条路径.将奇度数的点两两相连边(虚边),然后先 ...
随机推荐
- js备忘录5
函数的全解析 原文链接: http://mp.weixin.qq.com/s?src=11×tamp=1509672643&ver=491&signature=9fD ...
- Oracle和MySQL插入时获取主键
这里只写selectKey方法的 一,Oracle数据库中的写法 order="BEFORE"因为oracle中需要先从序列获取值,然后将值作为主键插入到数据库中 <sele ...
- spring时间管理
spring时间管理相比Quartz要简单的多,但功能不如quartz强大 spring.xml的配置 <?xml version="1.0" encoding=" ...
- 软工网络15团队作业8——Beta阶段敏捷冲刺(用户使用调查报告)
一.项目概述 1.项目名称 考研必背 2.项目简介 微信小程序,帮助考研学生记忆单词. 3.项目预期达到目标 用户无需下载app,仅通过微信小程序就可以达到背单词的目的,并且能够制定背单词的计划. 4 ...
- 评论各组alpha发布
单纯从用户和体验者的角度来评价. 天天向上组的连连看游戏和新锋组的俄罗斯方块游戏,从alpha发布的成果完成度来看,两个游戏现在都可以玩,但连连看的完成度更高,可选背景,可选音乐.俄罗斯方块还有其他界 ...
- [学习]Windows server 使用控制台时容易卡死的解决方法
公司使用Windows server 下面的 cmd 命令行 控制台打开某一个 bat 文件的方式 进行后台使用.. 但是经常发现在winserver 2016 时 遇到卡死的情况, 今天中午我再进行 ...
- bing 搜索引擎 无法访问 bug
bing 搜索引擎 无法访问 bug 自从 Google 不好正常使用以后, 一直在使用 bing, 今天突然就 无法访问了,怎么回事?被黑了? ... loading https://cn.bing ...
- 计算机网络【8】—— Get和Post请求的区别
get参数通过url传递,post放在request body中. get请求在url中传递的参数是有长度限制的,而post没有. get比post更不安全,因为参数直接暴露在url中,所以不能用来传 ...
- 清华集训2015-Day 2
校内测试做到了,于是就把解题报告发出来. 简单回路 一个 \(n\times m\) 的方格纸,有 \(k\) 个障碍点.\(q\) 次询问,每次询问 \((x,y)\) ,问有多少条简单回路经过 \ ...
- java并发编程中CountDownLatch和CyclicBarrier的使用
在多线程程序设计中,经常会遇到一个线程等待一个或多个线程的场景,遇到这样的场景应该如何解决? 如果是一个线程等待一个线程,则可以通过await()和notify()来实现: 如果是一个线程等待多个线程 ...