========================================================================================
一、基础环境
========================================================================================
1、服务器分布
10.217.145.244  主名字节点
10.217.145.245  备名字节点
10.217.145.246  数据节点1
10.217.145.247  数据节点2
10.217.145.248  数据节点3

--------------------------------------------------------------------------------------------------------------------------------------------
2、HOSTS 设置
在每台服务器的“/etc/hosts”文件,添加如下内容:
10.217.145.244  namenode1
10.217.145.245  namenode2
10.217.145.246  datanode1
10.217.145.247  datanode2
10.217.145.248  datanode3

-------------------------------------------------------------------------------------------------------------------------------------------

3、SSH 免密码登录
可参考文章:

http://blog.csdn.net/codepeak/article/details/14447627

......

========================================================================================
二、Hadoop 2.2.0 编译安装【官方提供的二进制版本为32位版本,64位环境需重新编译】
========================================================================================
1、JDK 安装
http://download.oracle.com/otn-pub/java/jdk/7u45-b18/jdk-7u45-linux-x64.tar.gz

# tar xvzf jdk-7u45-linux-x64.tar.gz -C /usr/local
# cd /usr/local
# ln -s jdk1.7.0_45 jdk

# vim /etc/profile
export JAVA_HOME=/usr/local/jdk
export CLASS_PATH=$JAVA_HOME/lib:$JAVA_HOME/jre/lib
export PATH=$PATH:$JAVA_HOME/bin

# source /etc/profile

------------------------------------------------------------------------------------------------------------------------------------------

2、MAVEN 安装
http://mirror.bit.edu.cn/apache/maven/maven-3/3.1.1/binaries/apache-maven-3.1.1-bin.tar.gz

# tar xvzf apache-maven-3.1.1-bin.tar.gz -C /usr/local
# cd /usr/local
# ln -s apache-maven-3.1.1 maven

# vim /etc/profile
export MAVEN_HOME=/usr/local/maven
export PATH=$PATH:$MAVEN_HOME/bin

# source /etc/profile

# mvn -v

------------------------------------------------------------------------------------------------------------------------------------------

3、PROTOBUF 安装
https://protobuf.googlecode.com/files/protobuf-2.5.0.tar.gz

# tar xvzf protobuf-2.5.0.tar.gz
# ./configure --prefix=/usr/local/protobuf
# make && make install

# vim /etc/profile
export PROTO_HOME=/usr/local/protobuf
export PATH=$PATH:$PROTO_HOME/bin

# source /etc/profile

# vim /etc/ld.so.conf
/usr/local/protobuf/lib

# /sbin/ldconfig

------------------------------------------------------------------------------------------------------------------------------------------

4、其他依赖库安装
http://www.cmake.org/files/v2.8/cmake-2.8.12.1.tar.gz
http://ftp.gnu.org/pub/gnu/ncurses/ncurses-5.9.tar.gz
http://www.openssl.org/source/openssl-1.0.1e.tar.gz

# tar xvzf cmake-2.8.12.1.tar.gz
# cd cmake-2.8.12.1
# ./bootstrap --prefix=/usr/local
# gmake && gmake install

# tar xvzf ncurses-5.9.tar.gz
# cd ncurses-5.9
# ./configure --prefix=/usr/local
# make && make install

# tar xvzf openssl-1.0.1e.tar.gz
# cd openssl-1.0.1e
# ./config shared --prefix=/usr/local
# make && make install

# /sbin/ldconfig

------------------------------------------------------------------------------------------------------------------------------------------

5、编译 Hadoop
http://mirrors.hust.edu.cn/apache/hadoop/common/hadoop-2.2.0/hadoop-2.2.0-src.tar.gz

(1)、maven源设置【在<mirrors></mirros>里添加】
# vim /usr/local/maven/conf/settings.xml

1
2
3
4
5
6
<mirror>
    <id>nexus-osc</id>
    <mirrorOf>*</mirrorOf>
    <name>Nexusosc</name>
    <url>http://maven.oschina.net/content/groups/public/</url>
</mirror>

(2)、编译Hadoop
# tar xvzf hadoop-2.2.0-src.tar.gz
# cd hadoop-2.2.0-src
# mvn clean install -DskipTests
# mvn package -Pdist,native -DskipTests -Dtar

## 编译成功后,生成的二进制包所在路径
hadoop-dist/target/hadoop-2.2.0

# cp -a hadoop-dist/target/hadoop-2.2.0 /usr/local
# cd /usr/local
# ln -s hadoop-2.2.0 hadoop

【注意:编译过程中,可能会失败,需要多尝试几次】

========================================================================================
三、Hadoop YARN 分布式集群配置【注:所有节点都做同样配置】
========================================================================================
1、环境变量设置
# vim /etc/profile
export HADOOP_HOME=/usr/local/hadoop
export HADOOP_PID_DIR=/data/hadoop/pids
export HADOOP_COMMON_LIB_NATIVE_DIR=$HADOOP_HOME/lib/native
export HADOOP_OPTS="$HADOOP_OPTS -Djava.library.path=$HADOOP_HOME/lib/native"

export HADOOP_MAPRED_HOME=$HADOOP_HOME
export HADOOP_COMMON_HOME=$HADOOP_HOME
export HADOOP_HDFS_HOME=$HADOOP_HOME
export YARN_HOME=$HADOOP_HOME

export HADOOP_CONF_DIR=$HADOOP_HOME/etc/hadoop
export HDFS_CONF_DIR=$HADOOP_HOME/etc/hadoop
export YARN_CONF_DIR=$HADOOP_HOME/etc/hadoop

export JAVA_LIBRARY_PATH=$HADOOP_HOME/lib/native

export PATH=$PATH:$HADOOP_HOME/bin:$HADOOP_HOME/sbin

# source /etc/profile

------------------------------------------------------------------------------------------------------------------------------------------

2、相关路径创建
mkdir -p /data/hadoop/{pids,storage}
mkdir -p /data/hadoop/storage/{hdfs,tmp}
mkdir -p /data/hadoop/storage/hdfs/{name,data}

------------------------------------------------------------------------------------------------------------------------------------------

3、配置 core-site.xml
# vim /usr/local/hadoop/etc/hadoop/core-site.xml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
<configuration>
    <property>
        <name>fs.defaultFS</name>
        <value>hdfs://namenode1:9000</value>
    </property>
    <property>
        <name>io.file.buffer.size</name>
        <value>131072</value>
    </property>
    <property>
        <name>hadoop.tmp.dir</name>
        <value>file:/data/hadoop/storage/tmp</value>
    </property>
    <property>
        <name>hadoop.proxyuser.hadoop.hosts</name>
        <value>*</value>
    </property>
    <property>
        <name>hadoop.proxyuser.hadoop.groups</name>
        <value>*</value>
    </property>
    <property>
        <name>hadoop.native.lib</name>
        <value>true</value>
    </property>
</configuration>

------------------------------------------------------------------------------------------------------------------------------------------

4、配置 hdfs-site.xml
# vim /usr/local/hadoop/etc/hadoop/hdfs-site.xml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
<configuration>
    <property>
        <name>dfs.namenode.secondary.http-address</name>
        <value>namenode2:9000</value>
    </property>
    <property>
        <name>dfs.namenode.name.dir</name>
        <value>file:/data/hadoop/storage/hdfs/name</value>
    </property>
    <property>
        <name>dfs.datanode.data.dir</name>
        <value>file:/data/hadoop/storage/hdfs/data</value>
    </property>
    <property>
        <name>dfs.replication</name>
        <value>3</value>
    </property>
    <property>
        <name>dfs.webhdfs.enabled</name>
        <value>true</value>
    </property>
</configuration>

------------------------------------------------------------------------------------------------------------------------------------------

5、配置 mapred-site.xml
# vim /usr/local/hadoop/etc/hadoop/mapred-site.xml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
<configuration>
    <property>
        <name>mapreduce.framework.name</name>
        <value>yarn</value>
    </property>
    <property>
        <name>mapreduce.jobhistory.address</name>
        <value>namenode1:10020</value>
    </property>
                                                                                                                                                                                                               
    <property>
        <name>mapreduce.jobhistory.webapp.address</name>
        <value>namenode1:19888</value>
    </property>
</configuration>

------------------------------------------------------------------------------------------------------------------------------------------

6、配置 yarn-site.xml
# vim /usr/local/hadoop/etc/hadoop/yarn-site.xml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
<configuration>
    <property>
        <name>yarn.nodemanager.aux-services</name>
        <value>mapreduce_shuffle</value>
    </property>
    <property>
        <name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name>
        <value>org.apache.hadoop.mapred.ShuffleHandler</value>
    </property>
    <property>
        <name>yarn.resourcemanager.scheduler.address</name>
        <value>namenode1:8030</value>
    </property>
    <property>
        <name>yarn.resourcemanager.resource-tracker.address</name>
        <value>namenode1:8031</value>
    </property>
    <property>
        <name>yarn.resourcemanager.address</name>
        <value>namenode1:8032</value>
    </property>
    <property>
        <name>yarn.resourcemanager.admin.address</name>
        <value>namenode1:8033</value>
    </property>
    <property>
        <name>yarn.resourcemanager.webapp.address</name>
        <value>namenode1:80</value>
    </property>
</configuration>

------------------------------------------------------------------------------------------------------------------------------------------

7、配置 hadoop-env.sh、mapred-env.sh、yarn-env.sh【在开头添加】
文件路径:
/usr/local/hadoop/etc/hadoop/hadoop-env.sh
/usr/local/hadoop/etc/hadoop/mapred-env.sh
/usr/local/hadoop/etc/hadoop/yarn-env.sh

添加内容:
export JAVA_HOME=/usr/local/jdk
export CLASS_PATH=$JAVA_HOME/lib:$JAVA_HOME/jre/lib

export HADOOP_HOME=/usr/local/hadoop
export HADOOP_PID_DIR=/data/hadoop/pids
export HADOOP_COMMON_LIB_NATIVE_DIR=$HADOOP_HOME/lib/native
export HADOOP_OPTS="$HADOOP_OPTS -Djava.library.path=$HADOOP_HOME/lib/native"

export HADOOP_PREFIX=$HADOOP_HOME

export HADOOP_MAPRED_HOME=$HADOOP_HOME
export HADOOP_COMMON_HOME=$HADOOP_HOME
export HADOOP_HDFS_HOME=$HADOOP_HOME
export YARN_HOME=$HADOOP_HOME

export HADOOP_CONF_DIR=$HADOOP_HOME/etc/hadoop
export HDFS_CONF_DIR=$HADOOP_HOME/etc/hadoop
export YARN_CONF_DIR=$HADOOP_HOME/etc/hadoop

export JAVA_LIBRARY_PATH=$HADOOP_HOME/lib/native

export PATH=$PATH:$JAVA_HOME/bin:$HADOOP_HOME/bin:$HADOOP_HOME/sbin

------------------------------------------------------------------------------------------------------------------------------------------

8、数据节点配置
# vim /usr/local/hadoop/etc/hadoop/slaves
datanode1
datanode2
datanode3

------------------------------------------------------------------------------------------------------------------------------------------

9、Hadoop 简单测试
# cd /usr/local/hadoop

## 首次启动集群时,做如下操作【主名字节点上执行】
# hdfs namenode -format
# sbin/start-dfs.sh

## 检查进程是否正常启动
# jps

主名字节点:

备名字节点:

数据节点:

## hdfs与mapreduce测试
# hdfs dfs -mkdir -p /user/rocketzhang
# hdfs dfs -put bin/hdfs.cmd /user/rocketzhang
# hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.2.0.jar wordcount /user/rocketzhang /user/out
# hdfs dfs -ls /user/out

## hdfs信息查看
# hdfs dfsadmin -report
# hdfs fsck / -files -blocks

## 集群的后续维护
# sbin/start-all.sh
# sbin/stop-all.sh

## 监控页面URL
http://10.217.145.244:80/

========================================================================================
四、Spark 分布式集群配置【注:所有节点都做同样配置】
========================================================================================
1、Scala 安装
http://www.scala-lang.org/files/archive/scala-2.9.3.tgz

# tar xvzf scala-2.9.3.tgz -C /usr/local
# cd /usr/local
# ln -s scala-2.9.3 scala

# vim /etc/profile
export SCALA_HOME=/usr/local/scala
export PATH=$PATH:$SCALA_HOME/bin

# source /etc/profile

------------------------------------------------------------------------------------------------------------------------------------------

2、Spark 安装
http://d3kbcqa49mib13.cloudfront.net/spark-0.8.1-incubating-bin-hadoop2.tgz

# tar xvzf spark-0.8.1-incubating-bin-hadoop2.tgz -C /usr/local
# cd /usr/local
# ln -s spark-0.8.1-incubating-bin-hadoop2 spark

# vim /etc/profile
export SPARK_HOME=/usr/local/spark
export PATH=$PATH:$SPARK_HOME/bin

# source /etc/profile

# cd /usr/local/spark/conf
# mv spark-env.sh.template spark-env.sh

# vim spark-env.sh
export JAVA_HOME=/usr/local/jdk
export SCALA_HOME=/usr/local/scala
export HADOOP_HOME=/usr/local/hadoop

## worker节点的主机名列表
# vim slaves
datanode1
datanode2
datanode3

# mv log4j.properties.template log4j.properties

## 在Master节点上执行
# cd /usr/local/spark && .bin/start-all.sh

## 检查进程是否启动【在master节点上出现“Master”,在slave节点上出现“Worker”】
# jps

Master节点:

Slave节点:

------------------------------------------------------------------------------------------------------------------------------------------

3、相关测试
## 监控页面URL
http://10.217.145.244:8080/

## 先切换到“/usr/local/spark”目录
(1)、本地模式
# ./run-example org.apache.spark.examples.SparkPi local

(2)、普通集群模式
# ./run-example org.apache.spark.examples.SparkPi spark://namenode1:7077
# ./run-example org.apache.spark.examples.SparkLR spark://namenode1:7077
# ./run-example org.apache.spark.examples.SparkKMeans spark://namenode1:7077 file:/usr/local/spark/kmeans_data.txt 2 1

(3)、结合HDFS的集群模式
# hadoop fs -put README.md .
# MASTER=spark://namenode1:7077 ./spark-shell
scala> val file = sc.textFile("hdfs://namenode1:9000/user/root/README.md")
scala> val count = file.flatMap(line => line.split(" ")).map(word => (word, 1)).reduceByKey(_+_)
scala> count.collect()
scala> :quit

(4)、基于YARN模式
# SPARK_JAR=./assembly/target/scala-2.9.3/spark-assembly_2.9.3-0.8.1-incubating-hadoop2.2.0.jar \
./spark-class org.apache.spark.deploy.yarn.Client \
--jar examples/target/scala-2.9.3/spark-examples_2.9.3-assembly-0.8.1-incubating.jar \
--class org.apache.spark.examples.SparkPi \
--args yarn-standalone \
--num-workers 3 \
--master-memory 4g \
--worker-memory 2g \
--worker-cores 1

执行结果:
/usr/local/hadoop/logs/userlogs/application_*/container*_000001/stdout

(5)、其他一些样例程序
examples/src/main/scala/org/apache/spark/examples/

(6)、问题定位【数据节点上的日志】
/data/hadoop/storage/tmp/nodemanager/logs

(7)、一些优化
# vim /usr/local/spark/conf/spark-env.sh
export SPARK_WORKER_MEMORY=16g  【根据内存大小进行实际配置】
......

(8)、最终的目录结构

========================================================================================
五、Shark 数据仓库【后续补上】
========================================================================================
https://github.com/amplab/shark/releases

本文出自 “人生理想在于坚持不懈” 博客,请务必保留此出处http://sofar.blog.51cto.com/353572/1352713

spark集群安装[转]的更多相关文章

  1. [bigdata] spark集群安装及测试

    在spark安装之前,应该已经安装了hadoop原生版或者cdh,因为spark基本要基于hdfs来进行计算. 1. 下载 spark:  http://mirrors.cnnic.cn/apache ...

  2. spark集群安装配置

    spark集群安装配置 一. Spark简介 Spark是一个通用的并行计算框架,由UCBerkeley的AMP实验室开发.Spark基于map reduce 算法模式实现的分布式计算,拥有Hadoo ...

  3. 大数据技术之_19_Spark学习_01_Spark 基础解析 + Spark 概述 + Spark 集群安装 + 执行 Spark 程序

    第1章 Spark 概述1.1 什么是 Spark1.2 Spark 特点1.3 Spark 的用户和用途第2章 Spark 集群安装2.1 集群角色2.2 机器准备2.3 下载 Spark 安装包2 ...

  4. CentOS6安装各种大数据软件 第十章:Spark集群安装和部署

    相关文章链接 CentOS6安装各种大数据软件 第一章:各个软件版本介绍 CentOS6安装各种大数据软件 第二章:Linux各个软件启动命令 CentOS6安装各种大数据软件 第三章:Linux基础 ...

  5. Spark入门:第2节 Spark集群安装:1 - 3;第3节 Spark HA高可用部署:1 - 2

    三. Spark集群安装 3.1 下载spark安装包 下载地址spark官网:http://spark.apache.org/downloads.html 这里我们使用 spark-2.1.3-bi ...

  6. 3 Spark 集群安装

    第3章 Spark集群安装 3.1 Spark安装地址 1.官网地址 http://spark.apache.org/ 2.文档查看地址 https://spark.apache.org/docs/2 ...

  7. Spark 个人实战系列(1)--Spark 集群安装

    前言: CDH4不带yarn和spark, 因此需要自己搭建spark集群. 这边简单描述spark集群的安装过程, 并讲述spark的standalone模式, 以及对相关的脚本进行简单的分析. s ...

  8. 大数据平台搭建-spark集群安装

    版本要求 java 版本:1.8.*(1.8.0_60) 下载地址:http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downl ...

  9. Spark集群安装和WordCount编写

    一.Spark概述 官网:http://spark.apache.org/ Apache Spark™是用于大规模数据处理的统一分析引擎. 为大数据处理而设计的快速通用的计算引擎. Spark加州大学 ...

随机推荐

  1. 《剑指offer》 面试题43 n个骰子的点数 (java)

    引言:写这篇文章的初衷只是想做个笔记,因为这道题代码量有点大,有点抽象,而书上并没有详细的注释.为了加深印象和便于下次复习,做个记录. 原题:把n个骰子扔到地上,所有骰子朝上一面的点数之后为s. 输入 ...

  2. fopen()、fwrite()、fread()函数使用说明与示例

    fopen()函数: 1.作用: 在C语言中fopen()函数用于打开指定路径的文件,获取指向该文件的指针. 2.函数原型: FILE * fopen(const char * path,const  ...

  3. PHP常见数组方法和函数

    current();当前游标指向的数组单元值 next();下一个数组单元值 end()最后一个 reset()复位 prev()把数组指针往前一位 写法:$arr=array('a','b','c' ...

  4. 简明Python教程 ~ 随书笔记

    本文是阅读<简明Python教程>所做的随书笔记,主要是记录一些自己不熟悉的用法,或者所看到的比较有意思的内容,本书英文版A Byte of Python, 中文译版 简明Python教程 ...

  5. css给表格每一列设置不同的样式

    第一列#id table tr td:first-child{ overflow: visible; }第二列table tr td:first-child+td{color:#666;}第三列tab ...

  6. imperva 非交互式导入导出配置

    非交互使用模式full_expimp.sh可以导出/导入手动使用交互式CLI 在root的命令行下执行: 例子:导出:# full_expimp.sh --operation=1 --pwd=密码 - ...

  7. 加密文件之Java改进版

    对应Python版:加密文件之Python版Java版比Python版要快得多,两个版本不在一个量级上.在加密解密1G大文件时,Java版花费的时间是秒级,而Python版花费的时间是10分钟级. i ...

  8. Android Framebuffer介绍及使用【转】

    转自:https://www.jianshu.com/p/df1213e5a0ed 来自: Android技术特工队 作者: Aaron 主页: http://www.wxtlife.com/ 原文连 ...

  9. linux 获取时间后--自定义时间格式

    自定义时间格式 =================================-===================================== #include <stdio.h ...

  10. Python缓存技术,装x新高度。

    一段非常简单代码 普通调用方式 def console1(a, b): print("进入函数") return (a, b) print(console1(3, 'a')) pr ...