【题意】给定n个点的树,每条边有一个小写字母a~v,求每棵子树内的最长回文路径,回文路径定义为路径上所有字母存在一种排列为回文串。n<=5*10^5。

【算法】dsu on tree

【题解】这题经典套路就是按照22个字母个数的奇偶性压位,然后两段路径异或起来是0或1<<j就是合法路径。

dsu的时候每个点统计其子树内经过这个点的路径,注意包括从子树到该点终止的和该点自身也要算。

那么类似点分治的方式,算完重儿子后处理一下根,然后就一棵一棵轻儿子子树和之前的子树状态桶数组统计然后加入。

传递上去的时候需要特别注意,dsu是无法支持数组的整体位移的,解决方法一般是把统计从x到子树改为从根到子树,这样所有点都是一样的,不需要位移。

当然这就需要满足信息的可减性,而深度deep和异或xor都是满足的。(xor和deep的两点间路径转两点到根路径非常经典了)

复杂度O(n log n)。

#include<cstdio>
#include<cstring>
#include<algorithm>
bool isdigit(char c){return c>=''&&c<='';}
int read(){
int s=,t=;char c;
while(!isdigit(c=getchar()))if(c=='-')t=-;
do{s=s*+c-'';}while(isdigit(c=getchar()));
return s*t;
}
using namespace std;
const int maxn=,inf=0x3f3f3f3f;
int n,sz[maxn],first[maxn],a[maxn],b[],c[],ans[maxn],w[maxn],fa[maxn],tot,deep[maxn];
struct edge{int v,from;}e[maxn*];
void insert(int u,int v){tot++;e[tot].v=v;e[tot].from=first[u];first[u]=tot;}
void p(int &x,int y){if(x<y)x=y;}
void dfs_pre(int x){
sz[x]=;
for(int i=first[x];i;i=e[i].from){
deep[e[i].v]=deep[x]+;
a[e[i].v]^=a[x];
dfs_pre(e[i].v);
sz[x]+=sz[e[i].v];
if(sz[e[i].v]>sz[w[x]])w[x]=e[i].v;
}
}
void calc(int x,int tp){
for(int j=;j<=;j++)p(ans[tp],deep[x]+c[a[x]^b[j]]);
for(int i=first[x];i;i=e[i].from)calc(e[i].v,tp);
}
void add(int x,int k){
if(k)p(c[a[x]],deep[x]);
else c[a[x]]=-inf;
for(int i=first[x];i;i=e[i].from)add(e[i].v,k);
}
void dfs(int x){
for(int i=first[x];i;i=e[i].from)if(e[i].v!=w[x])dfs(e[i].v);
if(w[x])dfs(w[x]);//
p(c[a[x]],deep[x]);for(int j=;j<=;j++)p(ans[x],deep[x]+c[a[x]^b[j]]);
for(int i=first[x];i;i=e[i].from)if(e[i].v!=w[x])calc(e[i].v,x),add(e[i].v,);
if(x!=w[fa[x]])add(x,);
}
char s[];
int main(){
n=read();
for(int i=;i<=n;i++){
fa[i]=read();if(fa[i])insert(fa[i],i);
scanf("%s",s);a[i]=<<(s[]-'a');
}
b[]=;for(int j=;j<=;j++)b[j]=<<j;
for(int i=;i<(<<);i++)c[i]=-inf;
dfs_pre();dfs();
for(int i=;i<=n;i++)ans[i]-=*deep[i];
for(int i=n;i>=;i--)p(ans[fa[i]],ans[i]);
for(int i=;i<=n;i++)printf("%d ",ans[i]);
return ;
}

即使信息满足可减性,dsu on tree也不能像点分治一样删除某棵子树信息,进去统计后再加回来。因为dsu on tree必须满足【不能遍历重儿子】,否则复杂度就会爆炸。

不过如果题目要求的是除了某棵子树外的信息,就可以做,先统计所有轻儿子做除了重儿子的,然后进重儿子后统计所有轻儿子,一个一个删除来做除了某个轻儿子的。

【CodeForces】741 D. Arpa’s letter-marked tree and Mehrdad’s Dokhtar-kosh paths(dsu on tree)的更多相关文章

  1. 【cf741】D. Arpa’s letter-marked tree and Mehrdad’s Dokhtar-kosh paths(dsu on tree)

    传送门 题意: 给出一颗以\(1\)为根的有根树,树边带有一个字符(\(a\)~\(v\))的信息. 输出对于每个结点,其子树内最长的简单路径并且满足边上的字符能够组成回文串. 思路: 显然最终的答案 ...

  2. 【CF741D】Arpa’s letter-marked tree and Mehrdad’s Dokhtar-kosh paths(dsu on tree)

    题意:我们称一个字符串为周驿东串当且仅当重排它的字符可以组成一个回文串. 给出一个n个点的有根树,根为1,每条边上有一个从a到v的字符,求每个点的子树中所有简单路径可以组成的周驿东串中的最长长度. n ...

  3. Codeforces 741D Arpa’s letter-marked tree and Mehrdad’s Dokhtar-kosh paths(dsu on tree)

    感觉dsu on tree一定程度上还是与点分类似的.考虑求出跨过每个点的最长满足要求的路径,再对子树内取max即可. 重排后可以变成回文串相当于出现奇数次的字母不超过1个.考虑dsu on tree ...

  4. CF741D Arpa’s letter-marked tree and Mehrdad’s Dokhtar-kosh paths(dsu on tree)

    一棵根为1 的树,每条边上有一个字符(a-v共22种). 一条简单路径被称为Dokhtar-kosh当且仅当路径上的字符经过重新排序后可以变成一个回文串. 求每个子树中最长的Dokhtar-kosh路 ...

  5. 【Codeforces】Round #491 (Div. 2) 总结

    [Codeforces]Round #491 (Div. 2) 总结 这次尴尬了,D题fst,E没有做出来.... 不过还好,rating只掉了30,总体来说比较不稳,下次加油 A:If at fir ...

  6. 【Codeforces】Round #488 (Div. 2) 总结

    [Codeforces]Round #488 (Div. 2) 总结 比较僵硬的一场,还是手速不够,但是作为正式成为竞赛生的第一场比赛还是比较圆满的,起码没有FST,A掉ABCD,总排82,怒涨rat ...

  7. 【CodeForces】901 B. GCD of Polynomials

    [题目]B. GCD of Polynomials [题意]给定n,要求两个最高次项不超过n的多项式(第一个>第二个),使得到它们GCD的辗转次数为n.n<=150. [算法]构造 [题解 ...

  8. 【CF600E】Lomsat gelral(dsu on tree)

    [CF600E]Lomsat gelral(dsu on tree) 题面 洛谷 CF题面自己去找找吧. 题解 \(dsu\ on\ tree\)板子题 其实就是做子树询问的一个较快的方法. 对于子树 ...

  9. 【Silverlight】Bing Maps开发应用与技巧一:地图打点与坐标控件(CoordControl)

    [Silverlight]Bing Maps开发应用与技巧一:地图打点与坐标控件(CoordControl) 使用Bing Maps Silverlight Control开发中,很多时候都需要实现在 ...

随机推荐

  1. WPF string,color,brush之间的转换

    String转换成Color string-"ffffff" Color color = (Color)ColorConverter.ConvertFromString(strin ...

  2. 性能分析_linux服务器CPU_Load Average

    CPU度量Load Average 1.  概念介绍 1.1  Linux系统进程状态 在linux中,process有以下状态: runnable (就绪状态):blocked waiting fo ...

  3. 计算机网络【2】—— CSMA/CD协议

    参考文献: https://blog.csdn.net/loveCC_orange/article/details/79177129 一.认识以太网 最早的以太网是将许多计算机都连接到一根总线上. 使 ...

  4. 题解 P1208 【[USACO1.3]混合牛奶 Mixing Milk】

    其实根本没有一楼dalao描述的那么麻烦...... 一楼dalao其实吧,采用了一种纯属模拟的方式. 下面是我的大跃进思想 但是一个个地做减法是不是太慢了?(大跃进思想) 于是我们是不是可以直接进行 ...

  5. 关于BIO和NIO的理解

    摘要: 关于BIO和NIO的理解 最近大概看了ZooKeeper和Mina的源码发现都是用Java NIO实现的,所以有必要搞清楚什么是NIO.下面是我结合网络资料自己总结的,为了节约时间图示随便画的 ...

  6. Scrapy初尝试

    ,python3.6版本 在看网上的安装的时候下一堆依赖,其实没有必要一个个的去装,pip直接分析依赖一块下载安装下来! 已经安装了pip模块 直接上 pip install scrapy 安装twi ...

  7. 【集训】练习题 uria

    Description 求有多少组正整数对 \((a, b)\) 满足 \(a + b ≤ n\) \(a + b | ab\) \(n ≤ 10^14\) Solution 这题有点绕啊 设 \(g ...

  8. 【NOI】荷马史诗

    追逐影子的人,自己就是影子 ——荷马 Allison最近迷上了文学.她喜欢在一个慵懒的午后,细细地品上一杯卡布奇诺,静静地阅读她爱不释手的<荷马史诗>.但是由<奥德赛>和< ...

  9. bzoj2146 Construct

    题目描述 随着改革开放的深入推进…… 小T家要拆迁了…… 当对未来生活充满美好憧憬的小T看到拆迁协议书的时候,小T从一位大好的社会主义青年变成了绝望的钉子户. 由于小T的家位于市中心,拆迁工作又难以进 ...

  10. 【THUSC2017】座位

    题目背景 班级聚会的时候,班主任为了方便管理,规定吃饭的时候同一个寝室的同学必须坐在一起;但是吃完饭后,到了娱乐时间,喜欢不同游戏的同学会聚到一起;在这个过程中就涉及到了座位分配的问题. 题目描述 有 ...