POJ 3468 A Simple Problem with Integers (区间更新+区间查询)
Description
You have N integers, A1, A2, ... , AN. You need to deal with two kinds of operations. One type of operation is to add some given number to each number in a given interval. The other is to ask for the sum of numbers in a given interval.
Input
The first line contains two numbers N and Q. 1 ≤ N,Q ≤ 100000.
The second line contains N numbers, the initial values of A1, A2, ... , AN. -1000000000 ≤ Ai ≤ 1000000000.
Each of the next Q lines represents an operation.
"C a b c" means adding c to each of Aa, Aa+1, ... , Ab. -10000 ≤ c ≤ 10000.
"Q a b" means querying the sum of Aa, Aa+1, ... , Ab.
Output
You need to answer all Q commands in order. One answer in a line.
Sample Input
10 5
1 2 3 4 5 6 7 8 9 10
Q 4 4
Q 1 10
Q 2 4
C 3 6 3
Q 2 4
Sample Output
4
55
9
15
分析:
首先不考虑原始的情况,我们只考虑区间更新过后带来的影响的话,首先对于询问一个区间当中的元素和的话,肯定就是这个区间的原始的元素和,加上区间更新后所带来的影响,所以我们用a[]数组来保存前i个元素的和。
然后考虑区间更新所带来的影响,采用差分的思想,
设原数组第i位的值为ai,di=ai−a[i−1],则有(这里认为a0=0,此时的a表示的是数组中的原始值,与代码中的a不一样):
所以有:
于是我们得到了:
于是我们把原数组差分后维护两个树状数组,一个维护di,一个维护di×i。
这样区间求和时可以在两个树状数组中查询得到前缀和,区间修改时就是差分数组的修改,每次修改两个点即可。
其中c[i]维护的是d[i],c1[i]维护的是d[i]×i。
但是这里的c[]和c1[]都是差分数组,保存的也就只是更新所带来的值的变化,但因为这里要求的是在原来的基础上更新后的区间和,所以最终还要加上最原始的区间和。
代码:
#include<stdio.h>
#include<iostream>
#include<string.h>
using namespace std;
long long int a[510000],c[510000],c1[510000];
int n,k;
int lowbit(int x)
{
return x&(-x);
}
void update(long long int x,long long int val)
{
for(int i=x; i<=n; i+=lowbit(i))
{
c[i]+=val;
c1[i]+=(long long)x*val; //给差分数组中的位置x加上y
}
}
long long sum(long long int x) //查询前x项的和
{
long long ans=0;
for(int i=x; i; i-=lowbit(i))
ans+=(x+1)*c[i]-c1[i];
return ans+a[x];
}
int main()
{
char ch;
long long int st,ed,val,num;
while(~scanf("%d%d",&n,&k))
{
memset(a,0,sizeof(a));
memset(c,0,sizeof(c));
memset(c1,0,sizeof(c1));
for(int i=1; i<=n; i++)
{
scanf("%lld",&num);
a[i]+=a[i-1]+num;//a[i]保存的是前i个数的和
}
for(int i=0; i<k; i++)
{
getchar();
scanf("%c",&ch);
if(ch=='Q')
{
scanf("%llld%lld",&st,&ed);
printf("%lld\n",sum(ed)-sum(st-1));
}
else
{
scanf("%lld%lld%lld",&st,&ed,&val);
update(st,val);
update(ed+1,-val);
}
}
}
return 0;
}
POJ 3468 A Simple Problem with Integers (区间更新+区间查询)的更多相关文章
- POJ.3468 A Simple Problem with Integers(线段树 区间更新 区间查询)
POJ.3468 A Simple Problem with Integers(线段树 区间更新 区间查询) 题意分析 注意一下懒惰标记,数据部分和更新时的数字都要是long long ,别的没什么大 ...
- poj 3468 A Simple Problem with Integers 【线段树-成段更新】
题目:id=3468" target="_blank">poj 3468 A Simple Problem with Integers 题意:给出n个数.两种操作 ...
- 线段树(成段更新) POJ 3468 A Simple Problem with Integers
题目传送门 /* 线段树-成段更新:裸题,成段增减,区间求和 注意:开long long:) */ #include <cstdio> #include <iostream> ...
- POJ 3468 A Simple Problem with Integers(线段树功能:区间加减区间求和)
题目链接:http://poj.org/problem?id=3468 A Simple Problem with Integers Time Limit: 5000MS Memory Limit ...
- poj 3468 A Simple Problem with Integers(线段树+区间更新+区间求和)
题目链接:id=3468http://">http://poj.org/problem? id=3468 A Simple Problem with Integers Time Lim ...
- POJ 3468 A Simple Problem with Integers(分块入门)
题目链接:http://poj.org/problem?id=3468 A Simple Problem with Integers Time Limit: 5000MS Memory Limit ...
- poj 3468 A Simple Problem with Integers 线段树区间加,区间查询和
A Simple Problem with Integers Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://poj.org/problem?i ...
- poj 3468 A Simple Problem with Integers 线段树区间加,区间查询和(模板)
A Simple Problem with Integers Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://poj.org/problem?i ...
- poj 3468:A Simple Problem with Integers(线段树,区间修改求和)
A Simple Problem with Integers Time Limit: 5000MS Memory Limit: 131072K Total Submissions: 58269 ...
- [POJ] 3468 A Simple Problem with Integers [线段树区间更新求和]
A Simple Problem with Integers Description You have N integers, A1, A2, ... , AN. You need to deal ...
随机推荐
- CPU结合CS、IP寄存器进行执行程序
上一篇介绍了CS.IP两个寄存器内容,当我们运行一个可执行文件时,我们需要另外一个程序来将这个可执行文件加载到内存当中,关于这个加载可执行文件的程序,我们在这里不管他,点一下即可,一般是通过操作系统的 ...
- Asp.Net Core实现文件上传
1. Asp.Net Core Mvc方式 public class UploadController : Controller { private IHostingEnvironment _host ...
- 初识Linq to Entity
技术介绍: LINQ(Language Integrated Query,语言集成查询)是一组用于C#和VB.NET语言的扩展,它允许编写C#或者VB.net代码,以与查询数据库相同的方式操作内存数据 ...
- Qss 样式表的尝试
QLineEdit{ border:1px solid #137eb6; padding:2px; background-color:#F5F5F5; } QToolTip{ border:1px s ...
- 题解 P4379 【[USACO18OPEN]Lemonade Line】
不敢快速排序又想要快排的速度,还不用STL的小伙伴们看这里! 小金羊终于学会了堆排以外的另外的一种排序 (打个题解巩固一下) 归并排序(mergesort): 时间复杂度和快排一样的优秀. 先说归并排 ...
- Milk Patterns POJ - 3261(后缀数组+二分)
题意: 求可重叠的最长重复子串,但有一个限制条件..要至少重复k次 解析: 二分枚举k,对于连续的height 如果height[i] >= k 说明它们至少有k个元素是重复的,所以判断一下就好 ...
- Swift中使用MPMoviePlayerController实现自定义视频播放器界面
默认情况下播放器自带各种控制按钮,比如前进后退播放暂停等: var url = NSBundle.mainBundle().URLForResource("1", withExte ...
- 【Learning】积性函数前缀和——洲阁筛(min_25写法)
问题描述 洲阁筛解决的问题主要是\(n\)范围较大的积性函数前缀和. 已知一积性函数\(f(i)\),求\(\sum_{i=1}^nf(i)\). \(n\leq10^{12}\). 求解方法 如 ...
- 洛谷 P1313 计算系数 解题报告
P1313 计算系数 题目描述 给定一个多项式\((by+ax)^k\),请求出多项式展开后\(x^n*y^m\)项的系数. 输入输出格式 输入格式: 共一行,包含5个整数,分别为\(a,b,k,n, ...
- tokenizer
http://blog.csdn.net/beyond__devil/article/details/52829241