计算两端yuv视频流中每一帧的ssim值
方法同上一篇,仅仅不多这里在计算的时候用了opencv1的接口,出现了一些问题。最后总算攻克了。
程序:
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <cv.h>
#include <highgui.h>
#define NUM_FRAME 100 //仅仅处理前100帧,依据视频帧数可改动
void CalcPsnr(const char *in1,const char *in2)
{
cv::VideoCapture vc1;
cv::VideoCapture vc2;
bool flag1 = vc1.open(in1);
bool flag2 = vc2.open(in2);
if (!flag1||!flag2)
{
printf("avi file open error \n");
system("pause");
exit(-1);
} int frmCount1 = vc1.get(CV_CAP_PROP_FRAME_COUNT);
int frmCount2 = vc2.get(CV_CAP_PROP_FRAME_COUNT);
printf("frmCount: %d \n", frmCount1);
printf("frmCount: %d \n", frmCount2);
for (int i = 0; i < frmCount1; i++)
{
printf("%d/%d \n", i + 1, frmCount1);
cv::Mat image_ref;
vc1 >> image_ref;
cv::Mat image_obj;
vc2 >> image_obj;
double mse = 0;
double div_r = 0;
double div_g = 0;
double div_b = 0;
int width = image_ref.cols;
int height = image_ref.rows;
double psnr = 0;
for (int v = 0; v < height; v++)
{
for (int u = 0; u < width; u++)
{
div_r = image_ref.at<cv::Vec3b>(v, u)[0] - image_obj.at<cv::Vec3b>(v, u)[0];
div_g = image_ref.at<cv::Vec3b>(v, u)[1] - image_obj.at<cv::Vec3b>(v, u)[1];
div_b = image_ref.at<cv::Vec3b>(v, u)[2] - image_obj.at<cv::Vec3b>(v, u)[2];
mse += ((div_r*div_r + div_b*div_b + div_g*div_g) / 3); }
}
mse = mse / (width*height);
psnr = 10 * log10(255 * 255 / mse);
printf("%lf\n", mse);
printf("%lf\n", psnr);
}
return;
}
void CalcSsim(const char *in1,const char *in2)
{
CvCapture* capture1 = cvCreateFileCapture(in1);
CvCapture* capture2 = cvCreateFileCapture(in2);
int i = 0;
// default settings
double C1 = 6.5025, C2 = 58.5225; IplImage
*img1 = NULL, *img2 = NULL, *img1_img2 = NULL,
*img1_temp = NULL, *img2_temp = NULL,
*img1_sq = NULL, *img2_sq = NULL,
*mu1 = NULL, *mu2 = NULL,
*mu1_sq = NULL, *mu2_sq = NULL, *mu1_mu2 = NULL,
*sigma1_sq = NULL, *sigma2_sq = NULL, *sigma12 = NULL,
*ssim_map = NULL, *temp1 = NULL, *temp2 = NULL, *temp3 = NULL;
while (1)
{
printf("%d/%d \n", ++i, NUM_FRAME); /***************************** INITS **********************************/
img1_temp = cvQueryFrame(capture1);
img2_temp = cvQueryFrame(capture2); if (img1_temp == NULL || img2_temp == NULL)
return; int x = img1_temp->width, y = img1_temp->height;
int nChan = img1_temp->nChannels, d = IPL_DEPTH_32F;
CvSize size = cvSize(x, y); img1 = cvCreateImage(size, d, nChan);
img2 = cvCreateImage(size, d, nChan); cvConvert(img1_temp, img1);
cvConvert(img2_temp, img2);
/*cvReleaseImage(&img1_temp);
cvReleaseImage(&img2_temp);*/ img1_sq = cvCreateImage(size, d, nChan);
img2_sq = cvCreateImage(size, d, nChan);
img1_img2 = cvCreateImage(size, d, nChan); cvPow(img1, img1_sq, 2);
cvPow(img2, img2_sq, 2);
cvMul(img1, img2, img1_img2, 1); mu1 = cvCreateImage(size, d, nChan);
mu2 = cvCreateImage(size, d, nChan); mu1_sq = cvCreateImage(size, d, nChan);
mu2_sq = cvCreateImage(size, d, nChan);
mu1_mu2 = cvCreateImage(size, d, nChan); sigma1_sq = cvCreateImage(size, d, nChan);
sigma2_sq = cvCreateImage(size, d, nChan);
sigma12 = cvCreateImage(size, d, nChan); temp1 = cvCreateImage(size, d, nChan);
temp2 = cvCreateImage(size, d, nChan);
temp3 = cvCreateImage(size, d, nChan); ssim_map = cvCreateImage(size, d, nChan);
/*************************** END INITS **********************************/ //////////////////////////////////////////////////////////////////////////
// PRELIMINARY COMPUTING
cvSmooth(img1, mu1, CV_GAUSSIAN, 11, 11, 1.5);
cvSmooth(img2, mu2, CV_GAUSSIAN, 11, 11, 1.5); cvPow(mu1, mu1_sq, 2);
cvPow(mu2, mu2_sq, 2);
cvMul(mu1, mu2, mu1_mu2, 1); cvSmooth(img1_sq, sigma1_sq, CV_GAUSSIAN, 11, 11, 1.5);
cvAddWeighted(sigma1_sq, 1, mu1_sq, -1, 0, sigma1_sq); cvSmooth(img2_sq, sigma2_sq, CV_GAUSSIAN, 11, 11, 1.5);
cvAddWeighted(sigma2_sq, 1, mu2_sq, -1, 0, sigma2_sq); cvSmooth(img1_img2, sigma12, CV_GAUSSIAN, 11, 11, 1.5);
cvAddWeighted(sigma12, 1, mu1_mu2, -1, 0, sigma12); //////////////////////////////////////////////////////////////////////////
// FORMULA // (2*mu1_mu2 + C1)
cvScale(mu1_mu2, temp1, 2);
cvAddS(temp1, cvScalarAll(C1), temp1); // (2*sigma12 + C2)
cvScale(sigma12, temp2, 2);
cvAddS(temp2, cvScalarAll(C2), temp2); // ((2*mu1_mu2 + C1).*(2*sigma12 + C2))
cvMul(temp1, temp2, temp3, 1); // (mu1_sq + mu2_sq + C1)
cvAdd(mu1_sq, mu2_sq, temp1);
cvAddS(temp1, cvScalarAll(C1), temp1); // (sigma1_sq + sigma2_sq + C2)
cvAdd(sigma1_sq, sigma2_sq, temp2);
cvAddS(temp2, cvScalarAll(C2), temp2); // ((mu1_sq + mu2_sq + C1).*(sigma1_sq + sigma2_sq + C2))
cvMul(temp1, temp2, temp1, 1); // ((2*mu1_mu2 + C1).*(2*sigma12 + C2))./((mu1_sq + mu2_sq + C1).*(sigma1_sq + sigma2_sq + C2))
cvDiv(temp3, temp1, ssim_map, 1); CvScalar index_scalar = cvAvg(ssim_map); // through observation, there is approximately
// 1% error max with the original matlab program /*cout << "(R, G & B SSIM index)" << std::endl;
cout << index_scalar.val[2] << endl;
cout << index_scalar.val[1] << endl;
cout << index_scalar.val[0] << endl;*/ cvReleaseImage(&img1_sq);
cvReleaseImage(&img2_sq);
cvReleaseImage(&img1_img2);
cvReleaseImage(&mu1);
cvReleaseImage(&mu2);
cvReleaseImage(&mu1_sq);
cvReleaseImage(&mu2_sq);
cvReleaseImage(&mu1_mu2);
cvReleaseImage(&sigma1_sq);
cvReleaseImage(&sigma2_sq);
cvReleaseImage(&sigma12);
cvReleaseImage(&temp1);
cvReleaseImage(&temp2);
cvReleaseImage(&temp3);
cvReleaseImage(&ssim_map);
//double ssim=max(max(index_scalar.val[0], index_scalar.val[1]), index_scalar.val[2]);
double ssim = (index_scalar.val[0] + index_scalar.val[1] + index_scalar.val[2]) / 3;
std::cout << ssim << std::endl; }
cvReleaseCapture(&capture1);
cvReleaseCapture(&capture2);
return;
}
void DisplayYUV2RGB(const char *dir,const char *in,int _w,int _h)
{
int w = _w;
int h = _h;
printf("yuv file w: %d, h: %d \n", w, h);
FILE* pFileIn = fopen(in, "rb+");
int bufLen = w*h * 3 / 2;
unsigned char* pYuvBuf = new unsigned char[bufLen];
int iCount = 0; for (int i = 0; i<NUM_FRAME; i++)
{
fread(pYuvBuf, bufLen*sizeof(unsigned char), 1, pFileIn); cv::Mat yuvImg;
yuvImg.create(h * 3 / 2, w, CV_8UC1);
memcpy(yuvImg.data, pYuvBuf, bufLen*sizeof(unsigned char));
cv::Mat rgbImg;
cv::cvtColor(yuvImg, rgbImg, CV_YUV2BGR_I420); cv::imshow("img", rgbImg);
char s[100];
sprintf(s,"%spic%d%s",dir,i,".jpg");
cv::imwrite(s, rgbImg);
cv::waitKey(1); printf("%d \n", iCount++);
}
delete[] pYuvBuf;
fclose(pFileIn);
}
void Image_to_video(const char* in, const char* out)
{
int num = 1;
CvSize size = cvSize(1024, 768); //视频帧格式的大小
double fps = 30; //每秒钟的帧率
CvVideoWriter *writer = cvCreateVideoWriter(out, CV_FOURCC('D', 'I', 'V', 'X'), fps, size); //创建视频文件
char cname[100];
sprintf(cname, in, num); //载入图片的目录,图片的名称编号是1開始1,2,3,4,5.。。 。
IplImage *src = cvLoadImage(cname);
if (!src)
{
return;
}
IplImage *src_resize = cvCreateImage(size, 8, 3); //创建视频文件格式大小的图片
cvNamedWindow("avi");
while (src)
{
cvShowImage("avi", src_resize);
cvWaitKey(1);
cvResize(src, src_resize); //将读取的图片设置为视频格式大小同样
cvWriteFrame(writer, src_resize); //保存图片为视频流格式
cvReleaseImage(&src); //释放空间
num++;
sprintf(cname, in, num);
src = cvLoadImage(cname); //循环读取数据
}
cvReleaseVideoWriter(&writer);
cvReleaseImage(&src_resize);
}
int main(int argc, char *argv[])
{
const char *out = "C:/Users/jiang/Desktop/output/book_virtual08.yuv";
const char *dir = "C:/Users/jiang/Desktop/output/tupian1/";
DisplayYUV2RGB(dir, out, 1024, 768);
const char *outImagename = "C:/Users/jiang/Desktop/output/tupian1/pic%d.jpg";
const char *outVideoname = "C:/Users/jiang/Desktop/output/3outfile.avi";
Image_to_video(outImagename, outVideoname); out = "C:/Users/jiang/Desktop/bookarrival/bookarrival_c_8.yuv";
dir = "C:/Users/jiang/Desktop/output/tupian1/";
DisplayYUV2RGB(dir, out, 1024, 768);
outImagename = "C:/Users/jiang/Desktop/output/tupian1/pic%d.jpg";
outVideoname = "C:/Users/jiang/Desktop/output/4outfile.avi";
Image_to_video(outImagename, outVideoname); const char *in1 = "C:/Users/jiang/Desktop/output/3outfile.avi";
const char *in2 = "C:/Users/jiang/Desktop/output/4outfile.avi";
CalcPsnr(in1, in2);
CalcSsim(in1, in2); getchar();
}
计算两端yuv视频流中每一帧的ssim值的更多相关文章
- ffmpeg 从视频流中抓取图片
从视频中不断抓取图片的基本流程:打开视频流地址->获取视频流packt->解码成图片帧->输出图片 一.初始化Ffmpeg void ffmpegInit(){ av_registe ...
- 【iOS】控件截图、MP4格式视频流和m3u8格式视频流截取某一帧功能的实现
最近开发遇到一个点击按钮实现直播视频流截屏的功能,去网上查了一下资料,总结了一下iOS中截屏相关的知识,然后自己做了个demo. demo主要实现了3种截屏方法,分别对应三种不同的应用场景. 1.im ...
- 调用opencv相关函数,从视频流中提取出图片序列&&&&jpg图片序列,转化成avi格式视频
/************************ @HJ 2017/3/30 参考http://blog.sina.com.cn/s/blog_4b0020f301010qcz.html修改的代码 ...
- python学习之——计算给出代码中注释、代码、空行的行数
题目:计算给出代码中注释.代码.空行的行数 来源:网络 思路:注释行以 ‘#’开头,空行以 ‘\n’ 开头,以此作为判断 def count_linenum(fname): fobj = open(f ...
- 计算1至n中数字X出现的次数
描述 计算 1 至 n 中数字 X 出现的次数,其中 $n \ge 1,X \in [0,9]$. 解题思路 这是一道比较简单的题目,举个例子先:假设 $n=11, X=1$,那么就是求 1, 2, ...
- Android开启相机预览获取Yuv视频流数据
自定义SurfaceView 主要步骤: 实现SurfaceHolder.Callback接口,创建SurfaceView的生命周期 实现Camera.PreviewCallback接口,创建预览回调 ...
- ZT CSDN 如何以最快的速度计算出一个二进制数中1的个数? [
一道算法面试题:如何以最快的速度计算出一个二进制数中1的个数? [问题点数:10分,结帖人weicai_chen] 收藏 weicai_chen weicai_chen 等级: 结帖率:95.12% ...
- ZT 计算一个无符整数中1Bit的个数(1) 2010-04-20 10:52:48
计算一个无符整数中1Bit的个数(1) 2010-04-20 10:52:48 分类: C/C++ [转]计算一个无符整数中1Bit的个数(1) Count the number of bits ...
- Problem Q: C语言习题 计算该日在本年中是第几天
Problem Q: C语言习题 计算该日在本年中是第几天 Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 4572 Solved: 2474[Subm ...
随机推荐
- 线性表之顺序表C++实现
线性表之顺序表 一.头文件:SeqList.h //顺序线性表的头文件 #include<iostream> ; //定义顺序表SeqList的模板类 template<class ...
- [BZOJ3928/4048]Outer space invaders
[BZOJ3928/4048]Outer space invaders 题目大意: 有\(n(n\le300)\)个物品,第\(i\)个物品会在\(a_i\sim b_i\)时刻出现,且离你的距离为\ ...
- ROS知识(19)----写一个简单的pluginlib例子
参考资料: 官方教程:Writing and Using a Simple Plugin
- 从零开始搭建linux下laravel 5.5所需环境(三)
好的,我们已经安装好了nginx+mysql+php了,打开[ Laravel 5.5 文档 ] 快速入门 —— 安装配置篇 我们看到这里需要安装Composer,好的,我们现在就来安装Compose ...
- WINDOWS 的 MKLINK : 硬链接,符号链接 : 文件符号链接, 目录符号链接 : 目录联接
玩转WIN7的MKLINK 引言: 换了新电脑,终于再次使用上啦WIN7 ,经过一个周每天重装N次系统,... ... ... ... 在xp系统下,junction命令要用微软开发的小程序 junc ...
- ARM FPGA Extended Memory Interface
Connect a ARM Microcontroller to a FPGA using its Extended Memory Interface (EMI) http://elinux.org/ ...
- if....else的基本用法
if....else...是基本流程控制语句 1.基本格式: if(条件){ }else if(条件){ }else if(条件){ } ........ else{ } 解释:其中else if.e ...
- Apple Developer Registration and DUNS Number Not Accepted
Now that I have my Mac and app source code. I’m ready to start working on my first app. The next ste ...
- merge into优化sql(转)
使用Merge INTO优化SQL,性能提升巨大 分类: Oracle 2017-04-13 10:55:07 说说背景:开发有个需求,需要对新加的一个字段根据特定的业务逻辑更新数据.TPS_TR ...
- windowsxp下的mysql集群技术
1.准备工作 a.系统环境为:Windows Xp系统 b.mysql版本为:MySQL Server 5.5 c.mysql cluster版本为:mysql-cluster-gpl-noinsta ...