1. #coding:utf8
  2. import tushare as ts
  3. import pandas as pd
  4. import numpy as np
  5. import pymysql,datetime
  6. import matplotlib.pyplot as plt
  7. import logging
  8. import sys ,requests,re
  9.  
  10. def init_env():
  11. # token='23b817c8b6e2b772f37ad6f5628ad348a0aefed07ed9b07ecc75976d'
  12. # db=pymysql.connect(host='127.0.0.1',db='stock',user='root',passwd='root',charset='utf8')
  13. # cursor=db.cursor()
  14.  
  15. # pro=ts.pro_api(token)
  16. aa=1
  17. return aa
  18. # #初始化db,tushare token
  19. # db,cursor,pro=init_env()
  20.  
  21. #coding=utf-8
  22.  
  23. duan ="--------------------------" #在控制台断行区别的
  24.  
  25. if __name__ == "__main__":
  26.  
  27. nump_array_date = ['20170808210000' ,'20170808210100' ,'20170808210200' ,'20170808210300'
  28. ,'20170808210400' ,'20170808210500' ,'20170808210600' ,'20170808210700'
  29. ,'20170808210800' ,'20170808210900' ,'20170808211000' ,'20170808211100'
  30. ,'20170808211200' ,'20170808211300' ,'20170808211400' ,'20170808211500'
  31. ,'20170808211600' ,'20170808211700' ,'20170808211800' ,'20170808211900'
  32. ,'20170808212000' ,'20170808212100' ,'20170808212200' ,'20170808212300'
  33. ,'20170808212400' ,'20170808212500' ,'20170808212600' ,'20170808212700'
  34. ,'20170808212800' ,'20170808212900' ,'20170808213000' ,'20170808213100'
  35. ,'20170808213200' ,'20170808213300' ,'20170808213400' ,'20170808213500'
  36. ,'20170808213600' ,'20170808213700' ,'20170808213800' ,'20170808213900'
  37. ,'20170808214000' ,'20170808214100' ,'20170808214200' ,'20170808214300'
  38. ,'20170808214400' ,'20170808214500' ,'20170808214600' ,'20170808214700'
  39. ,'20170808214800' ,'20170808214900' ,'20170808215000' ,'20170808215100'
  40. ,'20170808215200' ,'20170808215300' ,'20170808215400' ,'20170808215500'
  41. ,'20170808215600' ,'20170808215700' ,'20170808215800' ,'20170808215900'
  42. ,'20170808220000' ,'20170808220100' ,'20170808220200' ,'20170808220300'
  43. ,'20170808220400' ,'20170808220500' ,'20170808220600' ,'20170808220700'
  44. ,'20170808220800' ,'20170808220900' ,'20170808221000' ,'20170808221100'
  45. ,'20170808221200' ,'20170808221300' ,'20170808221400' ,'20170808221500'
  46. ,'20170808221600' ,'20170808221700' ,'20170808221800' ,'20170808221900'
  47. ,'20170808222000' ,'20170808222100' ,'20170808222200' ,'20170808222300'
  48. ,'20170808222400' ,'20170808222500' ,'20170808222600' ,'20170808222700'
  49. ,'20170808222800' ,'20170808222900' ,'20170808223000' ,'20170808223100'
  50. ,'20170808223200' ,'20170808223300' ,'20170808223400' ,'20170808223500'
  51. ,'20170808223600' ,'20170808223700' ,'20170808223800' ,'20170808223900'
  52. ,'20170808224000' ,'20170808224100' ,'20170808224200' ,'20170808224300'
  53. ,'20170808224400' ,'20170808224500' ,'20170808224600' ,'20170808224700'
  54. ,'20170808224800' ,'20170808224900' ,'20170808225000' ,'20170808225100'
  55. ,'20170808225200' ,'20170808225300' ,'20170808225400' ,'20170808225500'
  56. ,'20170808225600' ,'20170808225700' ,'20170808225800' ,'20170808225900'
  57. ,'20170808230000' ,'20170809090000' ,'20170809090100' ,'20170809090200'
  58. ,'20170809090300' ,'20170809090400' ,'20170809090500' ,'20170809090600'
  59. ,'20170809090700' ,'20170809090800' ,'20170809090900' ,'20170809091000'
  60. ,'20170809091100' ,'20170809091200' ,'20170809091300' ,'20170809091400'
  61. ,'20170809091500' ,'20170809091600' ,'20170809091700' ,'20170809091800'
  62. ,'20170809091900' ,'20170809092000' ,'20170809092100' ,'20170809092200'
  63. ,'20170809092300' ,'20170809092400' ,'20170809092500' ,'20170809092600'
  64. ,'20170809092700' ,'20170809092800' ,'20170809092900' ,'20170809093000'
  65. ,'20170809093100' ,'20170809093200' ,'20170809093300' ,'20170809093400'
  66. ,'20170809093500' ,'20170809093600' ,'20170809093700' ,'20170809093800'
  67. ,'20170809093900' ,'20170809094000' ,'20170809094100' ,'20170809094200'
  68. ,'20170809094300' ,'20170809094400' ,'20170809094500' ,'20170809094600'
  69. ,'20170809094700' ,'20170809094800' ,'20170809094900' ,'20170809095000'
  70. ,'20170809095100' ,'20170809095200' ,'20170809095300' ,'20170809095400'
  71. ,'20170809095500' ,'20170809095600' ,'20170809095700' ,'20170809095800'
  72. ,'20170809095900' ,'20170809100000' ,'20170809100100' ,'20170809100200'
  73. ,'20170809100300' ,'20170809100400' ,'20170809100500' ,'20170809100600'
  74. ,'20170809100700' ,'20170809100800' ,'20170809100900' ,'20170809101000'
  75. ,'20170809101100' ,'20170809101200' ,'20170809101300' ,'20170809101400'
  76. ,'20170809103000' ,'20170809103100' ,'20170809103200' ,'20170809103300'
  77. ,'20170809103400' ,'20170809103500' ,'20170809103600' ,'20170809103700'
  78. ,'20170809103800' ,'20170809103900' ,'20170809104000' ,'20170809104100'
  79. ,'20170809104200' ,'20170809104300' ,'20170809104400' ,'20170809104500'
  80. ,'20170809104600' ,'20170809104700' ,'20170809104800' ,'20170809104900'
  81. ,'20170809105000' ,'20170809105100' ,'20170809105200' ,'20170809105300'
  82. ,'20170809105400' ,'20170809105500' ,'20170809105600' ,'20170809105700'
  83. ,'20170809105800' ,'20170809105900' ,'20170809110000' ,'20170809110100'
  84. ,'20170809110200' ,'20170809110300' ,'20170809110400' ,'20170809110500'
  85. ,'20170809110600' ,'20170809110700' ,'20170809110800' ,'20170809110900'
  86. ,'20170809111000' ,'20170809111100' ,'20170809111200' ,'20170809111300'
  87. ,'20170809111400' ,'20170809111500' ,'20170809111600' ,'20170809111700'
  88. ,'20170809111800' ,'20170809111900' ,'20170809112000' ,'20170809112100'
  89. ,'20170809112200' ,'20170809112300' ,'20170809112400' ,'20170809112500'
  90. ,'20170809112600' ,'20170809112700' ,'20170809112800' ,'20170809112900'
  91. ,'20170809133000' ,'20170809133100' ,'20170809133200' ,'20170809133300'
  92. ,'20170809133400' ,'20170809133500' ,'20170809133600' ,'20170809133700'
  93. ,'20170809133800' ,'20170809133900' ,'20170809134000' ,'20170809134100'
  94. ,'20170809134200' ,'20170809134300' ,'20170809134400' ,'20170809134500'
  95. ,'20170809134600' ,'20170809134700' ,'20170809134800' ,'20170809134900'
  96. ,'20170809135000' ,'20170809135100' ,'20170809135200' ,'20170809135300'
  97. ,'20170809135400' ,'20170809135500' ,'20170809135600' ,'20170809135700'
  98. ,'20170809135800' ,'20170809135900' ,'20170809140000' ,'20170809140100'
  99. ,'20170809140200' ,'20170809140300' ,'20170809140400' ,'20170809140500'
  100. ,'20170809140600' ,'20170809140700' ,'20170809140800' ,'20170809140900'
  101. ,'20170809141000' ,'20170809141100' ,'20170809141200' ,'20170809141300'
  102. ,'20170809141400' ,'20170809141500' ,'20170809141600' ,'20170809141700'
  103. ,'20170809141800' ,'20170809141900' ,'20170809142000' ,'20170809142100'
  104. ,'20170809142200' ,'20170809142300' ,'20170809142400' ,'20170809142500'
  105. ,'20170809142600' ,'20170809142700' ,'20170809142800' ,'20170809142900'
  106. ,'20170809143000' ,'20170809143100' ,'20170809143200' ,'20170809143300'
  107. ,'20170809143400' ,'20170809143500' ,'20170809143600' ,'20170809143700'
  108. ,'20170809143800' ,'20170809143900' ,'20170809144000' ,'20170809144100'
  109. ,'20170809144200' ,'20170809144300' ,'20170809144400' ,'20170809144500'
  110. ,'20170809144600' ,'20170809144700' ,'20170809144800' ,'20170809144900'
  111. ,'20170809145000' ,'20170809145100' ,'20170809145200' ,'20170809145300'
  112. ,'20170809145400' ,'20170809145500' ,'20170809145600' ,'20170809145700'
  113. ,'20170809145800' ,'20170809145900']
  114.  
  115. nump_array_date= pd.to_datetime(nump_array_date) # convert str to date
  116.  
  117. nump_array_price = [3900.0, 3903.0, 3891.0, 3888.0, 3893.0, 3895.0, 3899.0, 3906.0, 3914.0, 3911.0,
  118. 3912.0, 3910.0, 3914.0, 3920.0, 3920.0, 3915.0, 3915.0, 3915.0, 3911.0, 3903.0,
  119. 3901.0, 3899.0, 3894.0, 3901.0, 3901.0, 3897.0, 3891.0, 3882.0, 3878.0, 3881.0,
  120. 3878.0, 3885.0, 3886.0, 3889.0, 3887.0, 3887.0, 3886.0, 3885.0, 3886.0, 3887.0,
  121. 3894.0, 3888.0, 3890.0, 3887.0, 3888.0, 3883.0, 3880.0, 3885.0, 3887.0, 3882.0,
  122. 3882.0, 3887.0, 3886.0, 3885.0, 3890.0, 3891.0, 3887.0, 3890.0, 3886.0, 3891.0,
  123. 3888.0, 3891.0, 3881.0, 3878.0, 3877.0, 3875.0, 3871.0, 3872.0, 3879.0, 3876.0,
  124. 3879.0, 3885.0, 3884.0, 3883.0, 3879.0, 3877.0, 3880.0, 3878.0, 3882.0, 3885.0,
  125. 3883.0, 3884.0, 3883.0, 3881.0, 3882.0, 3889.0, 3896.0, 3891.0, 3897.0, 3905.0,
  126. 3901.0, 3902.0, 3899.0, 3897.0, 3896.0, 3899.0, 3902.0, 3902.0, 3905.0, 3913.0,
  127. 3910.0, 3909.0, 3902.0, 3901.0, 3902.0, 3897.0, 3903.0, 3902.0, 3901.0, 3900.0,
  128. 3903.0, 3906.0, 3906.0, 3909.0, 3904.0, 3902.0, 3902.0, 3902.0, 3904.0, 3909.0,
  129. 3909.0, 3941.0, 3934.0, 3947.0, 3938.0, 3939.0, 3938.0, 3932.0, 3930.0, 3929.0,
  130. 3924.0, 3930.0, 3930.0, 3926.0, 3929.0, 3918.0, 3914.0, 3912.0, 3908.0, 3912.0,
  131. 3913.0, 3910.0, 3915.0, 3916.0, 3913.0, 3915.0, 3918.0, 3913.0, 3908.0, 3912.0,
  132. 3911.0, 3916.0, 3913.0, 3915.0, 3918.0, 3917.0, 3916.0, 3920.0, 3920.0, 3917.0,
  133. 3916.0, 3912.0, 3913.0, 3909.0, 3911.0, 3910.0, 3907.0, 3908.0, 3901.0, 3907.0,
  134. 3908.0, 3909.0, 3910.0, 3909.0, 3911.0, 3912.0, 3914.0, 3915.0, 3913.0, 3919.0,
  135. 3917.0, 3915.0, 3918.0, 3919.0, 3918.0, 3926.0, 3925.0, 3925.0, 3927.0, 3923.0,
  136. 3926.0, 3926.0, 3920.0, 3921.0, 3919.0, 3919.0, 3917.0, 3921.0, 3924.0, 3922.0,
  137. 3921.0, 3923.0, 3922.0, 3922.0, 3927.0, 3928.0, 3928.0, 3929.0, 3926.0, 3927.0,
  138. 3928.0, 3926.0, 3922.0, 3912.0, 3911.0, 3908.0, 3912.0, 3910.0, 3913.0, 3905.0,
  139. 3910.0, 3904.0, 3893.0, 3896.0, 3898.0, 3896.0, 3903.0, 3905.0, 3905.0, 3907.0,
  140. 3906.0, 3909.0, 3910.0, 3910.0, 3913.0, 3911.0, 3911.0, 3914.0, 3913.0, 3908.0,
  141. 3913.0, 3910.0, 3910.0, 3911.0, 3914.0, 3918.0, 3917.0, 3917.0, 3919.0, 3919.0,
  142. 3917.0, 3922.0, 3926.0, 3924.0, 3927.0, 3925.0, 3940.0, 3940.0, 3943.0, 3949.0,
  143. 3953.0, 3951.0, 3951.0, 3953.0, 3950.0, 3957.0, 3964.0, 3964.0, 3960.0, 3958.0,
  144. 3963.0, 3963.0, 3956.0, 3959.0, 3959.0, 3957.0, 3961.0, 3960.0, 3960.0, 3963.0,
  145. 3972.0, 3971.0, 3974.0, 3982.0, 3980.0, 3981.0, 3969.0, 3970.0, 3970.0, 3972.0,
  146. 3968.0, 3968.0, 3970.0, 3974.0, 3973.0, 3974.0, 3971.0, 3972.0, 3978.0, 3982.0,
  147. 3975.0, 3971.0, 3970.0, 3972.0, 3971.0, 3970.0, 3973.0, 3973.0, 3976.0, 3976.0,
  148. 3975.0, 3981.0, 3980.0, 3979.0, 3979.0, 3984.0, 3980.0, 3977.0, 3983.0, 3984.0,
  149. 3984.0, 3980.0, 3979.0, 3979.0, 3978.0, 3978.0, 3978.0, 3979.0, 3983.0, 3978.0,
  150. 3978.0, 3981.0, 3984.0, 3990.0, 3993.0, 3997.0, 4001.0, 4000.0, 3997.0, 4003.0,
  151. 4003.0, 4000.0, 4002.0, 3991.0, 3994.0, 4006.0,]
  152.  
  153. df=pd.DataFrame({'date':nump_array_date,'price':nump_array_price})
  154. df_night=df[df.date<'2017-08-09 09:00:00']
  155. df_0900=df[(df.date>='2017-08-09 09:00:00')&(df.date<='2017-08-09 10:15:00')]
  156. df_1030=df[(df.date>='2017-08-09 10:30:00')&(df.date<='2017-08-09 11:30:00')]
  157. df_1330=df[(df.date>='2017-08-09 13:30:00')&(df.date<='2017-08-09 15:00:00')]
  158. df_all=df_0900.append(df_1030)
  159. df_final=df_all.append(df_1330)
  160.  
  161. x_tk=[]
  162. x_lb=[]
  163.  
  164. for i in range(0,len(df_final.date.tolist())):
  165. x_tk.append(i)
  166. if i % 7==0:
  167. x_lb.append(df_final.date.tolist()[i])
  168. else:
  169. x_lb.append("")
  170.  
  171. plt.plot(x_tk,df_final.price)
  172. plt.xticks(x_tk,(x_lb),rotation=80)
  173. plt.show()

  

#coding:utf8
import tushare as ts
import pandas as pd
import numpy as np
import pymysql,datetime
import matplotlib.pyplot as plt
import logging
import sys ,requests,re
def init_env():
# token='23b817c8b6e2b772f37ad6f5628ad348a0aefed07ed9b07ecc75976d'
# db=pymysql.connect(host='127.0.0.1',db='stock',user='root',passwd='root',charset='utf8')
# cursor=db.cursor()
 
# pro=ts.pro_api(token)
aa=
return aa
# #初始化db,tushare token
# db,cursor,pro=init_env()
#coding=utf-8
 
duan ="--------------------------" #在控制台断行区别的
if __name__ == "__main__":
 
 
 
nump_array_date = ['20170808210000' ,'20170808210100' ,'20170808210200' ,'20170808210300'
,'20170808210400' ,'20170808210500' ,'20170808210600' ,'20170808210700'
,'20170808210800' ,'20170808210900' ,'20170808211000' ,'20170808211100'
,'20170808211200' ,'20170808211300' ,'20170808211400' ,'20170808211500'
,'20170808211600' ,'20170808211700' ,'20170808211800' ,'20170808211900'
,'20170808212000' ,'20170808212100' ,'20170808212200' ,'20170808212300'
,'20170808212400' ,'20170808212500' ,'20170808212600' ,'20170808212700'
,'20170808212800' ,'20170808212900' ,'20170808213000' ,'20170808213100'
,'20170808213200' ,'20170808213300' ,'20170808213400' ,'20170808213500'
,'20170808213600' ,'20170808213700' ,'20170808213800' ,'20170808213900'
,'20170808214000' ,'20170808214100' ,'20170808214200' ,'20170808214300'
,'20170808214400' ,'20170808214500' ,'20170808214600' ,'20170808214700'
,'20170808214800' ,'20170808214900' ,'20170808215000' ,'20170808215100'
,'20170808215200' ,'20170808215300' ,'20170808215400' ,'20170808215500'
,'20170808215600' ,'20170808215700' ,'20170808215800' ,'20170808215900'
,'20170808220000' ,'20170808220100' ,'20170808220200' ,'20170808220300'
,'20170808220400' ,'20170808220500' ,'20170808220600' ,'20170808220700'
,'20170808220800' ,'20170808220900' ,'20170808221000' ,'20170808221100'
,'20170808221200' ,'20170808221300' ,'20170808221400' ,'20170808221500'
,'20170808221600' ,'20170808221700' ,'20170808221800' ,'20170808221900'
,'20170808222000' ,'20170808222100' ,'20170808222200' ,'20170808222300'
,'20170808222400' ,'20170808222500' ,'20170808222600' ,'20170808222700'
,'20170808222800' ,'20170808222900' ,'20170808223000' ,'20170808223100'
,'20170808223200' ,'20170808223300' ,'20170808223400' ,'20170808223500'
,'20170808223600' ,'20170808223700' ,'20170808223800' ,'20170808223900'
,'20170808224000' ,'20170808224100' ,'20170808224200' ,'20170808224300'
,'20170808224400' ,'20170808224500' ,'20170808224600' ,'20170808224700'
,'20170808224800' ,'20170808224900' ,'20170808225000' ,'20170808225100'
,'20170808225200' ,'20170808225300' ,'20170808225400' ,'20170808225500'
,'20170808225600' ,'20170808225700' ,'20170808225800' ,'20170808225900'
,'20170808230000' ,'20170809090000' ,'20170809090100' ,'20170809090200'
,'20170809090300' ,'20170809090400' ,'20170809090500' ,'20170809090600'
,'20170809090700' ,'20170809090800' ,'20170809090900' ,'20170809091000'
,'20170809091100' ,'20170809091200' ,'20170809091300' ,'20170809091400'
,'20170809091500' ,'20170809091600' ,'20170809091700' ,'20170809091800'
,'20170809091900' ,'20170809092000' ,'20170809092100' ,'20170809092200'
,'20170809092300' ,'20170809092400' ,'20170809092500' ,'20170809092600'
,'20170809092700' ,'20170809092800' ,'20170809092900' ,'20170809093000'
,'20170809093100' ,'20170809093200' ,'20170809093300' ,'20170809093400'
,'20170809093500' ,'20170809093600' ,'20170809093700' ,'20170809093800'
,'20170809093900' ,'20170809094000' ,'20170809094100' ,'20170809094200'
,'20170809094300' ,'20170809094400' ,'20170809094500' ,'20170809094600'
,'20170809094700' ,'20170809094800' ,'20170809094900' ,'20170809095000'
,'20170809095100' ,'20170809095200' ,'20170809095300' ,'20170809095400'
,'20170809095500' ,'20170809095600' ,'20170809095700' ,'20170809095800'
,'20170809095900' ,'20170809100000' ,'20170809100100' ,'20170809100200'
,'20170809100300' ,'20170809100400' ,'20170809100500' ,'20170809100600'
,'20170809100700' ,'20170809100800' ,'20170809100900' ,'20170809101000'
,'20170809101100' ,'20170809101200' ,'20170809101300' ,'20170809101400'
,'20170809103000' ,'20170809103100' ,'20170809103200' ,'20170809103300'
,'20170809103400' ,'20170809103500' ,'20170809103600' ,'20170809103700'
,'20170809103800' ,'20170809103900' ,'20170809104000' ,'20170809104100'
,'20170809104200' ,'20170809104300' ,'20170809104400' ,'20170809104500'
,'20170809104600' ,'20170809104700' ,'20170809104800' ,'20170809104900'
,'20170809105000' ,'20170809105100' ,'20170809105200' ,'20170809105300'
,'20170809105400' ,'20170809105500' ,'20170809105600' ,'20170809105700'
,'20170809105800' ,'20170809105900' ,'20170809110000' ,'20170809110100'
,'20170809110200' ,'20170809110300' ,'20170809110400' ,'20170809110500'
,'20170809110600' ,'20170809110700' ,'20170809110800' ,'20170809110900'
,'20170809111000' ,'20170809111100' ,'20170809111200' ,'20170809111300'
,'20170809111400' ,'20170809111500' ,'20170809111600' ,'20170809111700'
,'20170809111800' ,'20170809111900' ,'20170809112000' ,'20170809112100'
,'20170809112200' ,'20170809112300' ,'20170809112400' ,'20170809112500'
,'20170809112600' ,'20170809112700' ,'20170809112800' ,'20170809112900'
,'20170809133000' ,'20170809133100' ,'20170809133200' ,'20170809133300'
,'20170809133400' ,'20170809133500' ,'20170809133600' ,'20170809133700'
,'20170809133800' ,'20170809133900' ,'20170809134000' ,'20170809134100'
,'20170809134200' ,'20170809134300' ,'20170809134400' ,'20170809134500'
,'20170809134600' ,'20170809134700' ,'20170809134800' ,'20170809134900'
,'20170809135000' ,'20170809135100' ,'20170809135200' ,'20170809135300'
,'20170809135400' ,'20170809135500' ,'20170809135600' ,'20170809135700'
,'20170809135800' ,'20170809135900' ,'20170809140000' ,'20170809140100'
,'20170809140200' ,'20170809140300' ,'20170809140400' ,'20170809140500'
,'20170809140600' ,'20170809140700' ,'20170809140800' ,'20170809140900'
,'20170809141000' ,'20170809141100' ,'20170809141200' ,'20170809141300'
,'20170809141400' ,'20170809141500' ,'20170809141600' ,'20170809141700'
,'20170809141800' ,'20170809141900' ,'20170809142000' ,'20170809142100'
,'20170809142200' ,'20170809142300' ,'20170809142400' ,'20170809142500'
,'20170809142600' ,'20170809142700' ,'20170809142800' ,'20170809142900'
,'20170809143000' ,'20170809143100' ,'20170809143200' ,'20170809143300'
,'20170809143400' ,'20170809143500' ,'20170809143600' ,'20170809143700'
,'20170809143800' ,'20170809143900' ,'20170809144000' ,'20170809144100'
,'20170809144200' ,'20170809144300' ,'20170809144400' ,'20170809144500'
,'20170809144600' ,'20170809144700' ,'20170809144800' ,'20170809144900'
,'20170809145000' ,'20170809145100' ,'20170809145200' ,'20170809145300'
,'20170809145400' ,'20170809145500' ,'20170809145600' ,'20170809145700'
,'20170809145800' ,'20170809145900']
 
nump_array_date= pd.to_datetime(nump_array_date) # convert str to date
 
nump_array_price = [3900.0, 3903.0, 3891.0, 3888.0, 3893.0, 3895.0, 3899.0, 3906.0, 3914.0, 3911.0,
3912.0, 3910.0, 3914.0, 3920.0, 3920.0, 3915.0, 3915.0, 3915.0, 3911.0, 3903.0,
3901.0, 3899.0, 3894.0, 3901.0, 3901.0, 3897.0, 3891.0, 3882.0, 3878.0, 3881.0,
3878.0, 3885.0, 3886.0, 3889.0, 3887.0, 3887.0, 3886.0, 3885.0, 3886.0, 3887.0,
3894.0, 3888.0, 3890.0, 3887.0, 3888.0, 3883.0, 3880.0, 3885.0, 3887.0, 3882.0,
3882.0, 3887.0, 3886.0, 3885.0, 3890.0, 3891.0, 3887.0, 3890.0, 3886.0, 3891.0,
3888.0, 3891.0, 3881.0, 3878.0, 3877.0, 3875.0, 3871.0, 3872.0, 3879.0, 3876.0,
3879.0, 3885.0, 3884.0, 3883.0, 3879.0, 3877.0, 3880.0, 3878.0, 3882.0, 3885.0,
3883.0, 3884.0, 3883.0, 3881.0, 3882.0, 3889.0, 3896.0, 3891.0, 3897.0, 3905.0,
3901.0, 3902.0, 3899.0, 3897.0, 3896.0, 3899.0, 3902.0, 3902.0, 3905.0, 3913.0,
3910.0, 3909.0, 3902.0, 3901.0, 3902.0, 3897.0, 3903.0, 3902.0, 3901.0, 3900.0,
3903.0, 3906.0, 3906.0, 3909.0, 3904.0, 3902.0, 3902.0, 3902.0, 3904.0, 3909.0,
3909.0, 3941.0, 3934.0, 3947.0, 3938.0, 3939.0, 3938.0, 3932.0, 3930.0, 3929.0,
3924.0, 3930.0, 3930.0, 3926.0, 3929.0, 3918.0, 3914.0, 3912.0, 3908.0, 3912.0,
3913.0, 3910.0, 3915.0, 3916.0, 3913.0, 3915.0, 3918.0, 3913.0, 3908.0, 3912.0,
3911.0, 3916.0, 3913.0, 3915.0, 3918.0, 3917.0, 3916.0, 3920.0, 3920.0, 3917.0,
3916.0, 3912.0, 3913.0, 3909.0, 3911.0, 3910.0, 3907.0, 3908.0, 3901.0, 3907.0,
3908.0, 3909.0, 3910.0, 3909.0, 3911.0, 3912.0, 3914.0, 3915.0, 3913.0, 3919.0,
3917.0, 3915.0, 3918.0, 3919.0, 3918.0, 3926.0, 3925.0, 3925.0, 3927.0, 3923.0,
3926.0, 3926.0, 3920.0, 3921.0, 3919.0, 3919.0, 3917.0, 3921.0, 3924.0, 3922.0,
3921.0, 3923.0, 3922.0, 3922.0, 3927.0, 3928.0, 3928.0, 3929.0, 3926.0, 3927.0,
3928.0, 3926.0, 3922.0, 3912.0, 3911.0, 3908.0, 3912.0, 3910.0, 3913.0, 3905.0,
3910.0, 3904.0, 3893.0, 3896.0, 3898.0, 3896.0, 3903.0, 3905.0, 3905.0, 3907.0,
3906.0, 3909.0, 3910.0, 3910.0, 3913.0, 3911.0, 3911.0, 3914.0, 3913.0, 3908.0,
3913.0, 3910.0, 3910.0, 3911.0, 3914.0, 3918.0, 3917.0, 3917.0, 3919.0, 3919.0,
3917.0, 3922.0, 3926.0, 3924.0, 3927.0, 3925.0, 3940.0, 3940.0, 3943.0, 3949.0,
3953.0, 3951.0, 3951.0, 3953.0, 3950.0, 3957.0, 3964.0, 3964.0, 3960.0, 3958.0,
3963.0, 3963.0, 3956.0, 3959.0, 3959.0, 3957.0, 3961.0, 3960.0, 3960.0, 3963.0,
3972.0, 3971.0, 3974.0, 3982.0, 3980.0, 3981.0, 3969.0, 3970.0, 3970.0, 3972.0,
3968.0, 3968.0, 3970.0, 3974.0, 3973.0, 3974.0, 3971.0, 3972.0, 3978.0, 3982.0,
3975.0, 3971.0, 3970.0, 3972.0, 3971.0, 3970.0, 3973.0, 3973.0, 3976.0, 3976.0,
3975.0, 3981.0, 3980.0, 3979.0, 3979.0, 3984.0, 3980.0, 3977.0, 3983.0, 3984.0,
3984.0, 3980.0, 3979.0, 3979.0, 3978.0, 3978.0, 3978.0, 3979.0, 3983.0, 3978.0,
3978.0, 3981.0, 3984.0, 3990.0, 3993.0, 3997.0, 4001.0, 4000.0, 3997.0, 4003.0,
4003.0, 4000.0, 4002.0, 3991.0, 3994.0, 4006.0,]
df=pd.DataFrame({'date':nump_array_date,'price':nump_array_price})
df_night=df[df.date<'2017-08-09 09:00:00']
df_0900=df[(df.date>='2017-08-09 09:00:00')&(df.date<='2017-08-09 10:15:00')]
df_1030=df[(df.date>='2017-08-09 10:30:00')&(df.date<='2017-08-09 11:30:00')]
df_1330=df[(df.date>='2017-08-09 13:30:00')&(df.date<='2017-08-09 15:00:00')]
df_all=df_0900.append(df_1030)
df_final=df_all.append(df_1330)
 
x_tk=[]
x_lb=[]
for i in range(,len(df_final.date.tolist())):
x_tk.append(i)
if i % ==:
x_lb.append(df_final.date.tolist()[i])
else:
x_lb.append("")
 
plt.plot(x_tk,df_final.price)
plt.xticks(x_tk,(x_lb),rotation=)
plt.show()

csdn的一次回答问题的更多相关文章

  1. Java并发1——线程创建、启动、生命周期与线程控制

    内容提要: 线程与进程 为什么要使用多线程/进程?线程与进程的区别?线程对比进程的优势?Java中有多进程吗? 线程的创建与启动 线程的创建有哪几种方式?它们之间有什么区别? 线程的生命周期与线程控制 ...

  2. 【转】js实现复制到剪贴板功能,兼容所有浏览器

    两天前听了一个H5的分享,会议上有一句话,非常有感触:不是你不能,而是你对自己的要求太低.很简单的一句话,相信很多事情不是大家做不到,真的是对自己的要求太低,如果对自己要求多一点,那么你取得的进步可能 ...

  3. float 的有效数字为七位是怎么得出来的

    以下内容来自CSDN网友xian_wwq的回答(http://bbs.csdn.net/topics/390874239): float:   1bit(符号位) 8bits(指数位) 23bits( ...

  4. 为什么开发者热衷在Stack Overflow上查阅API文档?

    摘要:一项新研究跟踪了Android开发者的访问历史,发现开发者多达二分之一的文档是从Stack Overflow上获取到的,而Stack Overflow上的示例也多于官方指南,开发者通过搜索更多时 ...

  5. 关于using namespace std

    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~关于using   namespace   std ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ...

  6. A标签中传递的中文参数到Servlet 后台request.getParameter()接收时出现中文乱码

    package util; import javax.servlet.http.HttpServletRequest;import javax.servlet.http.HttpServletRequ ...

  7. using namespace std 是什么意思?

    摘录CSDN上面大牛的回答简要意思就是使用标准库,想知道更清楚的继续读下面的. using   namespace   std   意思:   using   和namespace都是C++的关键词. ...

  8. super.onCreate(savedInstanceState) 以及onCreate(Bundle savedInstanceState, PersistableBundle persistentState)

    super.onCreate(savedInstanceState) 调用父类的onCreate构造函数. 当一个Activity在生命周期结束前,会调用onSaveInsanceState()这个回 ...

  9. cas sso 整合记录

    首先说明下,我使用的cas-server版本是4.2.1 整合过程中遇到的问题及解决方式如下 1.因为使用https的话证书是个麻烦事,所以启用http 修改cas-server-webapp下的ca ...

随机推荐

  1. cv::circle《转》

    void circle(CV_IN_OUT Mat& img, Point center, int radius, const Scalar& color, int thickness ...

  2. Simple2D-19(音乐播放器)播放器的源码实现

    使用 BASS 和 ImGui 实现音乐播放器 MusicPlayer. 将播放器和一个文件夹关联起来,程序刚开始运行的时候就从该文件夹加载所有音频文件.而文件夹的路径则保存在配置文件中,所以程序的第 ...

  3. UI5-文档-2.3-使用SAPUI5工具为Eclipse开发应用程序

    用于为简单用例开发应用程序.用于Eclipse的SAPUI5应用程序开发工具提供向导来支持您以一种简单的方式创建应用程序.使用application project向导,将自动创建包含视图和控制器的必 ...

  4. 从底层谈WebGIS 原理设计与实现(六):WebGIS中地图瓦片在Canvas上的拼接显示原理

    从底层谈WebGIS 原理设计与实现(六):WebGIS中地图瓦片在Canvas上的拼接显示原理 作者:naaoveGI…    文章来源:naaoveGIS    点击数:1145    更新时间: ...

  5. python生成可执行文件保护源码

    工作中由于需要防止源代泄漏,需要将源代码隐藏,找到两种方法: 1.使用python生成的pyc文件. 这种方法的优点就是pyc文件生成很容易,缺点则是很容易通过工具得到源码,并且python版本不一致 ...

  6. 更新日志(建议升级到2017.1.18a) && 更新程序的方法

    更新程序的步骤: 1,在控制面板里点击备份当前数据库文件到磁盘,把当天获取的信息从内存写到磁盘/存储卡.2,下载最新版的源码 wget -O "infopi.zip" " ...

  7. 练习:自己写一个容器ArrayList集合 一一数组综合练习2

    package cn.bjsxt.collection; /** * 自己实现一个ArrayList */ import java.util.ArrayList; import java.util.L ...

  8. hibernate 1对1的关系

    hibernate 中1对1的关系分为外键关联和主键关联 外键关联: //多方 public class Students {                                     ...

  9. Springboot IDEA eclipse 打包

    在开发springboot项目中,我们会进行打包发布项目,springboot推荐以jar包方式发布,相对之下 jar运行的效率比起war项目快很多. 打包切记: 1.查看项目里面有没有其他的main ...

  10. SpringMVC上传文件的MultipartFile源码

    零.MultipartFile上传文件的具体实例如下: http://blog.csdn.net/swingpyzf/article/details/20230865 一.具体类和方法 上传文件主要方 ...