【BZOJ3884】上帝与集合的正确用法
Description
一句话题意,给定\(p\)作为模数:
\(p\le 10^7\),数据组数\(T\le1000\)。
Solution
看到就弃疗了,再见......
将模数\(p\)拆分成\(p=q2^k\),其中\(q\)为一个奇数。那么:
2^{2^{2...}}mod\; p&=2^k(2^{2^{2..}-k}mod\;q)\\
&=2^k(2^{(2^{2..}-k)mod\;\varphi(q)}mod\;q)
\end{aligned}
\]
考虑递归计算\((2^{2...}-k)\)的\(2^{2...}\),只不过模数由\(p\)变成\(\varphi(q)\)。当模数\(p\)变成1的时候,我们就遇到了边界——不管里面式子如何,模1都是0,直接返回0即可。考虑递归的层数:除了第一次调用的\(p\)可能是奇数之外,往下递归的\(p\)几乎都是偶数(\(\varphi(x),x\ge3\)都是偶数),\(\varphi(q)\)相对于\(p\)大概会减少一倍。直到\(p=1\)时,层数不会太多,dalao说是\(O(log^2p\))。
所以就直接递归计算了。实现上,如果先用线性筛筛出所有的\(\varphi\),太慢。每次调用\(\varphi\)时直接\(O(\sqrt n)\)计算反而更加快。这两种方法,是稳定300ms和6ms的差距......
Code
#include <cstdio>
using namespace std;
const int S=10000001;
inline int ksm(int x,int y,int MOD){
int res=1;
for(;y;x=1LL*x*x%MOD,y>>=1)
if(y&1) res=1LL*res*x%MOD;
return res;
}
int getPhi(int x){
int res=x;
for(int i=2;i*i<=x;i++){
if(!(x%i)) res-=res/i;
while(!(x%i)) x/=i;
}
if(x!=1) res-=res/x;
return res;
}
int calc(int p){
if(p==1) return 0;
int k=0,q=p;
while(!(q&1)) k++,q>>=1;
int phiq=getPhi(q);
int mi=(calc(phiq)-k)%phiq;
if(mi<0) mi+=phiq;
return 1LL*ksm(2,mi,q)*ksm(2,k,p)%p;
}
int main(){
int T,p;
scanf("%d",&T);
while(T--){
scanf("%d",&p);
printf("%d\n",calc(p));
}
return 0;
}
【BZOJ3884】上帝与集合的正确用法的更多相关文章
- bzoj3884上帝与集合的正确用法
Description 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“ ...
- BZOJ3884: 上帝与集合的正确用法 拓展欧拉定理
Description 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“ ...
- BZOJ3884: 上帝与集合的正确用法(欧拉函数 扩展欧拉定理)
Time Limit: 5 Sec Memory Limit: 128 MBSubmit: 3860 Solved: 1751[Submit][Status][Discuss] Descripti ...
- bzoj3884 上帝与集合的正确用法
a^b mod P=a^(b mod phi(p)) mod p,利用欧拉公式递归做下去. 代码 #pragma comment(linker,"/STACK:1024000000,1024 ...
- bzoj3884: 上帝与集合的正确用法 欧拉降幂公式
欧拉降幂公式:http://blog.csdn.net/acdreamers/article/details/8236942 糖教题解处:http://blog.csdn.net/skywalkert ...
- bzoj3884: 上帝与集合的正确用法 扩展欧拉定理
题意:求\(2^{2^{2^{2^{...}}}}\%p\) 题解:可以发现用扩展欧拉定理不需要很多次就能使模数变成1,后面的就不用算了 \(a^b\%c=a^{b\%\phi c} gcd(b,c) ...
- bzoj千题计划264:bzoj3884: 上帝与集合的正确用法
http://www.lydsy.com/JudgeOnline/problem.php?id=3884 欧拉降幂公式 #include<cmath> #include<cstdio ...
- BZOJ3884 上帝与集合的正确用法(欧拉函数)
设f(n)为模n时的答案,由2k mod n=2k mod φ(n)+φ(n) mod n(并不会证),且k mod φ(n)=f(φ(n)),直接就可以得到一个递推式子.记搜一发即可. #inclu ...
- bzoj3884: 上帝与集合的正确用法(数论)
感觉是今天洛谷月赛T3的弱化版,会写洛谷T3之后这题一眼就会写了... 还是欧拉扩展定理 于是就在指数上递归%phi(p)+phi(p)直到1,则后面的指数就都没用了,这时候返回,边回溯边快速幂.因为 ...
- [bzoj3884]上帝与集合的正确用法——欧拉函数
题目大意 题解 出题人博客 代码 #include <bits/stdc++.h> using namespace std; const int M = 10001000; int phi ...
随机推荐
- 009--EXPLAIN用法和结果分析
在日常工作中,我们会有时会开慢查询去记录一些执行时间比较久的SQL语句,找出这些SQL语句并不意味着完事了,些时我们常常用到explain这个命令来查看一个这些SQL语句的执行计划,查看该SQL语句有 ...
- UVa 10055
说一下犯错的地方: 1)没有注意数据范围,题目中是The input numbers are not greater than balabalabala. 而这个32位的int类型恰好装不下2^32, ...
- 《The Mythical Man-Month(人月神话)》读后感(1)
临近考试周,这里我通过平时阅读的<人月神话>十九个章节和知乎.简书等网页中网友们对<人月神话>的读后感,对书中各个章节进行简单的总结,以下均为个人手打观点的思考与整合,仅供大家 ...
- js 的filter()方法
filter()方法使用指定的函数测试所有元素,并创建一个包含所有通过测试的元素的新数组. filter()基本语法: arr.filter(callback[, thisArg]) filter() ...
- Hadoop Streaming框架使用(二)
上一篇文章介绍了Streaming的各种参数,本文具体介绍使用方法. 提交hadoop任务示例: $HADOOP_HOME/bin/hadoop streaming \ -input /user/te ...
- Linux下oracle启动/关闭监听(bash:lsnrctl:command not found)
打开终端 切换帐户 # su - Oracle 启动监听 $ lsnrctl start 关闭监听 $ lsnrctl stop 切换帐户一定要加 "-" 否则会出现: bas ...
- Scrum立会报告+燃尽图(十二月七日总第三十八次):功能测试
此作业要求参见:https://edu.cnblogs.com/campus/nenu/2018fall/homework/2284 项目地址:https://git.coding.net/zhang ...
- “Hello World!”Final发布文案加美工
文案: 大家好,我们是“Hello World!”团队,本次我将向大家简要介绍一下空天猎的final发布,在空天猎final发布中,我主要从以下两个方面向大家进行介绍,第一个方面是增加了敌方的boss ...
- spring冲刺第五天
昨天进行了地图的初步编写,上网查找了错误的原因,改进了源代码,使程序可以执行. 今天继续编写地图代码,完善地图界面,使其变得美观. 遇到的问题:地图的完善比较难.
- ASP.NET Forms身份验证概述
表单身份验证允许您使用自己的代码对用户进行身份验证,然后在cookie或页面URL中维护身份验证令牌.表单身份验证通过FormsAuthenticationModule类参与ASP.NET页面生命周期 ...