【BZOJ3884】上帝与集合的正确用法
Description
一句话题意,给定\(p\)作为模数:
\(p\le 10^7\),数据组数\(T\le1000\)。
Solution
看到就弃疗了,再见......
将模数\(p\)拆分成\(p=q2^k\),其中\(q\)为一个奇数。那么:
2^{2^{2...}}mod\; p&=2^k(2^{2^{2..}-k}mod\;q)\\
&=2^k(2^{(2^{2..}-k)mod\;\varphi(q)}mod\;q)
\end{aligned}
\]
考虑递归计算\((2^{2...}-k)\)的\(2^{2...}\),只不过模数由\(p\)变成\(\varphi(q)\)。当模数\(p\)变成1的时候,我们就遇到了边界——不管里面式子如何,模1都是0,直接返回0即可。考虑递归的层数:除了第一次调用的\(p\)可能是奇数之外,往下递归的\(p\)几乎都是偶数(\(\varphi(x),x\ge3\)都是偶数),\(\varphi(q)\)相对于\(p\)大概会减少一倍。直到\(p=1\)时,层数不会太多,dalao说是\(O(log^2p\))。
所以就直接递归计算了。实现上,如果先用线性筛筛出所有的\(\varphi\),太慢。每次调用\(\varphi\)时直接\(O(\sqrt n)\)计算反而更加快。这两种方法,是稳定300ms和6ms的差距......
Code
#include <cstdio>
using namespace std;
const int S=10000001;
inline int ksm(int x,int y,int MOD){
int res=1;
for(;y;x=1LL*x*x%MOD,y>>=1)
if(y&1) res=1LL*res*x%MOD;
return res;
}
int getPhi(int x){
int res=x;
for(int i=2;i*i<=x;i++){
if(!(x%i)) res-=res/i;
while(!(x%i)) x/=i;
}
if(x!=1) res-=res/x;
return res;
}
int calc(int p){
if(p==1) return 0;
int k=0,q=p;
while(!(q&1)) k++,q>>=1;
int phiq=getPhi(q);
int mi=(calc(phiq)-k)%phiq;
if(mi<0) mi+=phiq;
return 1LL*ksm(2,mi,q)*ksm(2,k,p)%p;
}
int main(){
int T,p;
scanf("%d",&T);
while(T--){
scanf("%d",&p);
printf("%d\n",calc(p));
}
return 0;
}
【BZOJ3884】上帝与集合的正确用法的更多相关文章
- bzoj3884上帝与集合的正确用法
Description 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“ ...
- BZOJ3884: 上帝与集合的正确用法 拓展欧拉定理
Description 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“ ...
- BZOJ3884: 上帝与集合的正确用法(欧拉函数 扩展欧拉定理)
Time Limit: 5 Sec Memory Limit: 128 MBSubmit: 3860 Solved: 1751[Submit][Status][Discuss] Descripti ...
- bzoj3884 上帝与集合的正确用法
a^b mod P=a^(b mod phi(p)) mod p,利用欧拉公式递归做下去. 代码 #pragma comment(linker,"/STACK:1024000000,1024 ...
- bzoj3884: 上帝与集合的正确用法 欧拉降幂公式
欧拉降幂公式:http://blog.csdn.net/acdreamers/article/details/8236942 糖教题解处:http://blog.csdn.net/skywalkert ...
- bzoj3884: 上帝与集合的正确用法 扩展欧拉定理
题意:求\(2^{2^{2^{2^{...}}}}\%p\) 题解:可以发现用扩展欧拉定理不需要很多次就能使模数变成1,后面的就不用算了 \(a^b\%c=a^{b\%\phi c} gcd(b,c) ...
- bzoj千题计划264:bzoj3884: 上帝与集合的正确用法
http://www.lydsy.com/JudgeOnline/problem.php?id=3884 欧拉降幂公式 #include<cmath> #include<cstdio ...
- BZOJ3884 上帝与集合的正确用法(欧拉函数)
设f(n)为模n时的答案,由2k mod n=2k mod φ(n)+φ(n) mod n(并不会证),且k mod φ(n)=f(φ(n)),直接就可以得到一个递推式子.记搜一发即可. #inclu ...
- bzoj3884: 上帝与集合的正确用法(数论)
感觉是今天洛谷月赛T3的弱化版,会写洛谷T3之后这题一眼就会写了... 还是欧拉扩展定理 于是就在指数上递归%phi(p)+phi(p)直到1,则后面的指数就都没用了,这时候返回,边回溯边快速幂.因为 ...
- [bzoj3884]上帝与集合的正确用法——欧拉函数
题目大意 题解 出题人博客 代码 #include <bits/stdc++.h> using namespace std; const int M = 10001000; int phi ...
随机推荐
- RabbitMQ入门:主题路由器(Topic Exchange)
上一篇博文中,我们使用direct exchange 代替了fanout exchange,这次我们来看下topic exchange. 一.Topic Exchange介绍 topic exchan ...
- ceilometer 源码分析(polling)(O版)
一.简单介绍ceilometer 这里长话短说, ceilometer是用来采集openstack下面各种资源的在某一时刻的资源值,比如云硬盘的大小等.下面是官网现在的架构图 这里除了ceilomet ...
- 【机器学习】无监督学习Autoencoder和VAE
众所周知,机器学习的训练数据之所以非常昂贵,是因为需要大量人工标注数据. autoencoder可以输入数据和输出数据维度相同,这样测试数据匹配时和训练数据的输出端直接匹配,从而实现无监督训练的效果. ...
- openssl在多平台和多语言之间进行RSA加解密注意事项
首先说一下平台和语言: 系统平台为CentOS6.3,RSA加解密时使用NOPADDING进行填充 1)使用C/C++调用系统自带的openssl 2)Android4.2模拟器,第三方openssl ...
- lscpu命令详解
基础命令学习目录首页 一.lscpu输出 使用lscpu查看的结果如下图,这里会显示很多信息,如下: 使用lscpu -p会详细的numa信息,如下: [root@localhost ~]# lscp ...
- Vue 列表渲染及条件渲染实战
条件渲染 有时候我们要根据数据的情况,决定标签是否进行显示或者有其他动作.最常见的就是,表格渲染的时候,如果表格没有数据,就显示无数据.如果有数据就显示表格数据. Vue 帮我们提供了一个v-if的指 ...
- Apache 工作模式的正确配置
prefork work event
- (第十周)新NABCD
项目名:食物链教学工具 组名:奋斗吧兄弟 组长:黄兴 组员:李俞寰.杜桥.栾骄阳.王东涵 新的NABCD模型: Need:可以辅助教师课堂讲授食物链相关的知识.软件的界面要漂亮,操作要简单,要给出软件 ...
- 将eclipse上的web项目部署到Tomcat服务器上经验总结
1. 将Tomcat插件添加到eclipse上 Window --> Preferences --> Server --> Runtime Environment --> A ...
- 今日事——Sprint计划会议
一. Sprint需求: 解屏提醒部分 界面设计 登录功能 备忘功能 成就系统 二.工作认领: 因有成员请假回家,所以延后认领,目前主要任务是学习如何在andriod平台开发并搭建开发环境. 网上 ...