【洛谷】【动态规划+单调队列】P1725 琪露诺
【题目描述:】
在幻想乡,琪露诺是以笨蛋闻名的冰之妖精。
某一天,琪露诺又在玩速冻青蛙,就是用冰把青蛙瞬间冻起来。但是这只青蛙比以往的要聪明许多,在琪露诺来之前就已经跑到了河的对岸。于是琪露诺决定到河岸去追青蛙。
小河可以看作一列格子依次编号为0到N,琪露诺只能从编号小的格子移动到编号大的格子。而且琪露诺按照一种特殊的方式进行移动,当她在格子i时,她只移动到区间[i+l,i+r]中的任意一格。你问为什么她这么移动,这还不简单,因为她是笨蛋啊。
每一个格子都有一个冰冻指数A[i],编号为0的格子冰冻指数为0。当琪露诺停留在那一格时就可以得到那一格的冰冻指数A[i]。琪露诺希望能够在到达对岸时,获取最大的冰冻指数,这样她才能狠狠地教训那只青蛙。
但是由于她实在是太笨了,所以她决定拜托你帮它决定怎样前进。
开始时,琪露诺在编号0的格子上,只要她下一步的位置编号大于N就算到达对岸。
【输入格式:】
第1行:3个正整数N, L, R
第2行:N+1个整数,第i个数表示编号为i-1的格子的冰冻指数A[i-1]
【输出格式:】
一个整数,表示最大冰冻指数。保证不超过231-1
[算法分析:]
一道典型的DP题,已知a[i]为点i的冰冻指数,设f[i]为到达点i时获得的最大冰冻指数
则f[i]的状态是由f[i+l, i+r]转移来的
即f[r]的状态是由f[i-r, i-l]得到的.
可以求得状态转移方程:
f[i] = max{f[i - j]} + a[i]
l <= j <= r <= i
时间复杂度为O(n2),n ≤ 200000 的范围显然是超时了.
考虑如何优化:
显然对于求max{f[i - j]}的过程是可以优化的,
用优先队列或者线段树?O(n log2 n)确实是一个很优秀的复杂度,但是还有更优的:
单调队列,时间复杂度为O(n).
每次把一个f[p]值放入deque中,维护序列的单调性(从大到小),
但如果某一次队头的元素的坐标已经不足以跳到当前点了,就要把队首pop出去
所以deque中存放的应是一个结构体或者pair.
那有没有可能在pop队尾的时候把之后的最优解pop掉呢?
现在要加入队列的元素坐标一定比队尾元素要大,而其值也比需要被pop掉的队尾元素大,
所以最优解不管怎么pop都会在队列里。
[Code:]
//P1725 琪露诺
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<queue>
using namespace std; const int MAXN = + ; int n, l, r;
int a[MAXN];
int f[MAXN];
struct Node {
int v, num;
}; deque<Node> q; inline int read() {
int x=, f=; char ch=getchar();
while(ch<'' || ch>'') {
if(ch == '-') f = -;
ch = getchar();
}
while(ch>='' && ch<='')
x=(x<<)+(x<<)+ch-, ch=getchar();
return x * f;
} int main() {
n = read(), l = read(), r = read();
for(int i=; i<=n; ++i)
a[i] = read();
int p = ;
for(int i=l; i<=n; ++i) {
// 求max{f[i-r, i-l]}
// int maxn = 1 << 31;
// int s = i-r<0 ? 0 : i-r;
// for(int j=s; j<=i-l; ++j)
// maxn = max(maxn, f[j]);
while(!q.empty() && q.back().v < f[p])
q.pop_back();
q.push_back((Node){f[p], p});
while(q.front().num + r < i) q.pop_front();
f[i] = q.front().v + a[i];
++p;
}
int ans = << ;
for(int i=n-r+; i<=n; ++i)
ans = max(ans, f[i]);
printf("%d\n", ans);
}
【洛谷】【动态规划+单调队列】P1725 琪露诺的更多相关文章
- 洛谷P1725琪露诺(单调队列优化dp)
P1725 琪露诺 题目描述 在幻想乡,琪露诺是以笨蛋闻名的冰之妖精.某一天,琪露诺又在玩速冻青蛙,就是用冰把青蛙瞬间冻起来.但是这只青蛙比以往的要聪明许多,在琪露诺来之前就已经跑到了河的对岸.于是琪 ...
- 洛谷 P1725 琪露诺 题解
P1725 琪露诺 题目描述 在幻想乡,琪露诺是以笨蛋闻名的冰之妖精. 某一天,琪露诺又在玩速冻青蛙,就是用冰把青蛙瞬间冻起来.但是这只青蛙比以往的要聪明许多,在琪露诺来之前就已经跑到了河的对岸.于是 ...
- P1725 琪露诺
P1725 琪露诺 单调队列优化dp 对于不是常数转移的dp转移,我们都可以考虑单调队列转移 然而我们要把数组开大 #include<cstdio> #include<algorit ...
- luogu P1725 琪露诺
二次联通门 : luogu P1725 琪露诺 /* luogu P1725 琪露诺 DP + 线段树 用线段树维护dp[i - R] ~ dp[i - L]的最大值 然后 转移方程是 dp[i] = ...
- P1725 琪露诺(单调队列优化)
描述:https://www.luogu.com.cn/problem/P1725 小河可以看作一列格子依次编号为0到N,琪露诺只能从编号小的格子移动到编号大的格子.而且琪露诺按照一种特殊的方式进行移 ...
- 洛谷P1725 琪露诺
传送门啦 本人第一个单调队列优化 $ dp $,不鼓励鼓励? 琪露诺这个题,$ dp $ 还是挺好想的对不,但是暴力 $ dp $ 的话会 $ TLE $ ,所以我们考虑用单调队列优化. 原题中说她只 ...
- 洛谷—— P1725 琪露诺
https://www.luogu.org/problem/show?pid=1725 题目描述 在幻想乡,琪露诺是以笨蛋闻名的冰之妖精.某一天,琪露诺又在玩速冻青蛙,就是用冰把青蛙瞬间冻起来.但是这 ...
- P1725 琪露诺 题解(单调队列)
题目链接 琪露诺 解题思路 单调队列优化的\(dp\). 状态转移方程:\(f[i]=max{f[i-l],f[i-l+1],...,f[i-r-1],f[i-r]}+a[i]\) 考虑单调队列优化. ...
- 洛谷P1725 琪露诺 (单调队列/堆优化DP)
显然的DP题..... 对于位置i,它由i-r~i-l的位置转移过来,容易得到方程 dp[i]=dp[i]+max(dp[i−r],...,dp[i−l]). 第一种:n2的暴力,只能拿部分分. 1 ...
随机推荐
- python学习之老男孩python全栈第九期_day015知识点总结
# 作用域相关(2)locals() # 返回本地作用域中的所有名字 globals() # 返回全局作用域中的所有名字 # 迭代器/生成器相关(3)range()print('__next__' i ...
- [js常用]将秒转化为时分秒
内容引入至网络 <!DOCTYPE html> <html> <head> <meta http-equiv="Content-Type" ...
- Spring 配置数据源之一三兄弟
前期的准备工作,我们是使用的是maven,我们下载节点即可... 节点如下: <dependency> <groupId>org.springframework</gro ...
- SQL SERVER DATETIME应用
),, , ),); ),, ),); ),, , ),); ),, ),); ),, , ),); ),, ),); How to get first and last day of previou ...
- redis事务报错No ongoing transaction. Did you forget to call multi?
场景:需要存两条数据到redis中,并且两条要么都存要么都不存,需要事务来控制 Spring Data Redis的RedisTemplate提供了MULTI.EXEC命令进行封装,远看可以解决问题, ...
- 慕课网 javascript深入浅出编程练习
任务 请在index.html文件中,编写arraysSimilar函数,实现判断传入的两个数组是否相似.具体需求: 1. 数组中的成员类型相同,顺序可以不同.例如[1, true] 与 [false ...
- iview select下拉bug
1场景:弹框内有一个下拉组件(支持搜索),当选择完数据后弹框关闭,再次打开后,下拉框内的数据是刚才选中的数据.原因:分析后觉得是搜索内容没有清空,导致下拉的数据只有一个解决:调用下setQuery方法 ...
- opencv图像处理时使用stringstream批量读取图片,处理后并保存
简介: 同文件输入输出流一样,使用stringstream可以批量读取图片,处理后并进行保存.因为C++中头文件 stringstream既可以从string读数据也可向string写数据,利于其这个 ...
- Spring Boot—20Zookeeper
https://docs.spring.io/spring-boot/docs/2.0.1.RELEASE/reference/htmlsingle/ pom.xml <dependency&g ...
- Eclipse创建第一个Servlet(Dynamic Web Project方式)、第一个Web Fragment Project(web容器向jar中寻找class文件)
创建第一个Servlet(Dynamic Web Project方式) 注意:无论是以注解的方式还是xml的方式配置一个servlet,servlet的url-pattern一定要以一个"/ ...