3503: [Cqoi2014]和谐矩阵

链接

分析:

  对于每个点,可以列出一个方程a[i][j]=a[i][j-1]^a[i][j+1]^a[i-1][j]^a[i+1][j],于是可以列出n*m个方程,高斯消元,复杂度$O(n^3m^3)$。可以再bitset优化一下。

  还有一种复杂度更优的做法:如果知道了第一行,那么整个矩阵都可以推出来了,即每个点可以有第一行的几个位置异或得到。

  所以可以推出每一行每个点,与第一行的那些点有关系,推得时候转化以下上面的式子,使得每一个点只与上面的行有关系。

  由于第n+1行只能全部是0,所以可以推出第n+1行每个点与第一行每个点的关系,然后列出m个方程,高斯消元,复杂度$O(m^3)$。

代码:

#include<cstdio>
#include<algorithm>
#include<cstring>
#include<iostream>
#include<cmath>
#include<cctype>
#include<set>
#include<queue>
#include<vector>
#include<map>
using namespace std;
typedef long long LL; inline int read() {
int x=,f=;char ch=getchar();for(;!isdigit(ch);ch=getchar())if(ch=='-')f=-;
for(;isdigit(ch);ch=getchar())x=x*+ch-'';return x*f;
} const int N = ;
LL a[N][N], b[N][N], c[N][N];
int n, m; void Gauss() {
for (int k = ; k <= m; ++k) {
int r = k;
while (r <= m && !a[r][k]) r ++;
if (r > m) continue;
if (r != k) for (int j = ; j <= m; ++j) swap(a[k][j], a[r][j]);
for (int i = k + ; i <= m; ++i)
if (a[i][k]) for (int j = ; j <= m; ++j) a[i][j] ^= a[k][j];
}
for (int i = m; i; --i) {
if (!a[i][i]) { c[][i] = ; continue; }
c[][i] = a[i][m + ];
for (int j = i + ; j <= m; ++j) if (a[i][j]) c[][i] ^= c[][j];
}
}
int main() {
n = read(), m = read();
for (int i = ; i <= m; ++i) b[][i] = (1ll << (i - ));
for (int i = ; i <= n + ; ++i)
for (int j = ; j <= m; ++j)
b[i][j] = b[i - ][j - ] ^ b[i - ][j] ^ b[i - ][j + ] ^ b[i - ][j];
for (int i = ; i <= m; ++i)
for (int j = ; j <= m; ++j) a[i][j] = (b[n + ][i] >> (j - )) & ;
Gauss();
for (int i = ; i <= n; ++i)
for (int j = ; j <= m; ++j)
c[i][j] = c[i - ][j - ] ^ c[i - ][j] ^ c[i - ][j + ] ^ c[i - ][j];
for (int i = ; i <= n; ++i, puts(""))
for (int j = ; j <= m; ++j) printf("%lld ", c[i][j]);
return ;
}

3503: [Cqoi2014]和谐矩阵的更多相关文章

  1. BZOJ 3503: [Cqoi2014]和谐矩阵( 高斯消元 )

    偶数个相邻, 以n*m个点为变量, 建立异或方程组然后高斯消元... O((n*m)^3)复杂度看起来好像有点大...但是压一下位的话就是O((n*m)^3 / 64), 常数小, 实际也跑得很快. ...

  2. BZOJ 3503 [CQOI2014]和谐矩阵

    题目链接 BZOJ 3503 题解 没想到--直接用暴力的\(O((nm)^3)\)算法,居然能过?! 高斯消元解异或方程组. #include <cstdio> #include < ...

  3. bzoj 3503: [Cqoi2014]和谐矩阵【高斯消元】

    如果确定了第一行,那么可以推出来整个矩阵,矩阵合法的条件是n+1行全是0 所以推出来n+1行和1行的关系,然后用异或高斯消元来解即可 #include<iostream> #include ...

  4. 【高斯消元】BZOJ3503 [Cqoi2014]和谐矩阵

    3503: [Cqoi2014]和谐矩阵 Time Limit: 10 Sec  Memory Limit: 128 MBSec  Special JudgeSubmit: 1197  Solved: ...

  5. bzoj千题计划105:bzoj3503: [Cqoi2014]和谐矩阵(高斯消元法解异或方程组)

    http://www.lydsy.com/JudgeOnline/problem.php?id=3503 b[i][j] 表示i对j是否有影响 高斯消元解异或方程组 bitset优化 #include ...

  6. BZOJ_3503_[Cqoi2014]和谐矩阵_高斯消元

    BZOJ_3503_[Cqoi2014]和谐矩阵_高斯消元 题意: 我们称一个由0和1组成的矩阵是和谐的,当且仅当每个元素都有偶数个相邻的1.一个元素相邻的元素包括它本身,及他上下左右的4个元素(如果 ...

  7. P3164 [CQOI2014]和谐矩阵

    P3164 [CQOI2014]和谐矩阵 乱写能AC,暴力踩标程(雾 第一眼 诶这题能暴力枚举2333!!! 第二眼 诶这题能高斯消元!那只需要把每个位置的数给设出来就能够列方程了!然后就可以\(O( ...

  8. BZOJ3503:[CQOI2014]和谐矩阵(高斯消元,bitset)

    Description 我们称一个由0和1组成的矩阵是和谐的,当且仅当每个元素都有偶数个相邻的1.一个元素相邻的元素包括它本 身,及他上下左右的4个元素(如果存在). 给定矩阵的行数和列数,请计算并输 ...

  9. Luogu3164 CQOI2014 和谐矩阵 异或高斯消元

    传送门 题意:给出$N,M$,试构造一个$N \times M$的非全$0$矩阵,其中所有格子都满足:它和它上下左右四个格子的权值之和为偶数.$N , M \leq 40$ 可以依据题目中的条件列出有 ...

随机推荐

  1. android 常用adb 及linux 命令

    一.ADB相关 adb shell:进入连接的USB调试模式设备shell命令行下 adb tcpip 5555:将USB连接的调试及的连接方式改为网络远程模式进行调试 这里端口为5555(adb 默 ...

  2. 使用Charles进行网络请求抓包解析

    使用Charles进行网络请求抓包解析 0. 懒人的福音(⌐■_■)(破解版下载地址,记得安装java库支持) http://pan.baidu.com/s/1c08ksMW 1. 查看电脑的ip地址 ...

  3. Python(二)列表的增删改查

    一,列表的增删改查 列表中增加元素: 1,从列表的末尾增加一个元素:append("") 2,从列表中插入一个元素:insert(下标位置,插入的元素) 合并列表: 1,name. ...

  4. jQuery插件实例二:年华时代插件ReturnTop回到首页

    这个插件功能在于当网页内容高度很高时,方便用户快速回到顶部.核心在于对屏幕高度的获取,定时器的使用,在引用代码后,只使用$.nhsd.returnTop();即可实现效果 效果图: 代码: ; fun ...

  5. Sharepoint 2013 - 直接显示Doclib中的html page

    缺省的HTML不能直接显示,会被要求存盘.以下操作可以修改 Go to Central Administration Select Manage web applications Select the ...

  6. 面向对象程序设计_课堂作业_01_Circle

    The 1st classwork of the C++ program 题目: Create a program that asks for the radius of a circle and p ...

  7. IKVM.NET入门(2)

    ikvm.net是什么 http://www.ikvm.net/ ikvm.net是能够运行在mono和.net framework的java虚拟机.它包括了 在.net中实现的一个java虚拟机 j ...

  8. [国家集训队]小Z的袜子

    嘟嘟嘟 一眼就知道是莫队. 还不带修改,美滋滋. 按莫队的方法排序,然后用小学数学算一下概率,分子分母单独维护. #include<cstdio> #include<iostream ...

  9. Ansible--01

    一.ansible是什么: 类似puppet之类的运维自动化工具 二.为什么选择ansible: 1. ansible是python语言开发的,python语言进入门槛低,方便基于pytnon对ans ...

  10. FFMpeg笔记(一) 使用FFmpeg将任意格式图片转换成任意格式图片

    void SrcToDest(char* pSrc, char* pDest,unsigned int nSrcWidth, unsigned int nSrcHeight, AVPixelForma ...