Python Machine Learning: Scikit-Learn Tutorial
这是一篇翻译的博客,原文链接在这里。这是我看的为数不多的介绍scikit-learn简介而全面的文章,特别适合入门。我这里把这篇文章翻译一下,英语好的同学可以直接看原文。
大部分喜欢用Python来学习数据科学的人,应该听过scikit-learn,这个开源的Python库帮我们实现了一系列有关机器学习,数据处理,交叉验证和可视化的算法。其提供的接口非常好用。
这就是为什么DataCamp(原网站)要为那些已经开始学习Python库却没有一个简明且方便的总结的人提供这个总结。(原文是cheat sheet,翻译过来就是小抄,我这里翻译成总结,感觉意思上更积极点)。或者你压根都不知道scikit-learn如何使用,那这份总结将会帮助你快速的了解其相关的基本知识,让你快速上手。
你会发现,当你处理机器学习问题时,scikit-learn简直就是神器。
这份scikit-learn总结将会介绍一些基本步骤让你快速实现机器学习算法,主要包括:读取数据,数据预处理,如何创建模型来拟合数据,如何验证你的模型以及如何调参让模型变得更好。
总的来说,这份总结将会通过示例代码让你开始你的数据科学项目,你能立刻创建模型,验证模型,调试模型。(原文提供了pdf版的下载,内容和原文差不多)
A Basic Example
>>> from sklearn import neighbors, datasets, preprocessing
>>> from sklearn.cross_validation import train_test_split
>>> from sklearn.metrics import accuracy_score
>>> iris = datasets.load_iris()
>>> X, y = iris.data[:, :2], iris.target
>>> X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=33)
>>> scaler = preprocessing.StandardScaler().fit(X_train)
>>> X_train = scaler.transform(X_train)
>>> X_test = scaler.transform(X_test)
>>> knn = neighbors.KNeighborsClassifier(n_neighbors=5)
>>> knn.fit(X_train, y_train)
>>> y_pred = knn.predict(X_test)
>>> accuracy_score(y_test, y_pred)
(补充,这里看不懂不要紧,其实就是个小例子,后面会详细解答)
Loading The Data
你的数据需要是numeric类型,然后存储成numpy数组或者scipy稀疏矩阵。我们也接受其他能转换成numeric数组的类型,比如Pandas的DataFrame。
>>> import numpy as np
>>> X = np.random.random((10,5))
>>> y = np.array(['M','M','F','F','M','F','M','M','F','F','F'])
>>> X[X < 0.7] = 0
Preprocessing The Data
Standardization
>>> from sklearn.preprocessing import StandardScaler
>>> scaler = StandardScaler().fit(X_train)
>>> standardized_X = scaler.transform(X_train)
>>> standardized_X_test = scaler.transform(X_test)
Normalization
>>> from sklearn.preprocessing import Normalizer
>>> scaler = Normalizer().fit(X_train)
>>> normalized_X = scaler.transform(X_train)
>>> normalized_X_test = scaler.transform(X_test)
Binarization
>>> from sklearn.preprocessing import Binarizer
>>> binarizer = Binarizer(threshold=0.0).fit(X)
>>> binary_X = binarizer.transform(X)
Encoding Categorical Features
>>> from sklearn.preprocessing import LabelEncoder
>>> enc = LabelEncoder()
>>> y = enc.fit_transform(y)
Imputing Missing Values
>>>from sklearn.preprocessing import Imputer
>>>imp = Imputer(missing_values=0, strategy='mean', axis=0)
>>>imp.fit_transform(X_train)
Generating Polynomial Features
>>> from sklearn.preprocessing import PolynomialFeatures)
>>> poly = PolynomialFeatures(5))
>>> oly.fit_transform(X))
Training And Test Data
>>> from sklearn.cross_validation import train_test_split)
>>> X_train, X_test, y_train, y_test = train_test_split(X,y,random_state=0))
Create Your Model
Supervised Learning Estimators
Linear Regression
>>> from sklearn.linear_model import LinearRegression)
>>> lr = LinearRegression(normalize=True))
Support Vector Machines (SVM)
>>> from sklearn.svm import SVC)
>>> svc = SVC(kernel='linear'))
Naive Bayes
>>> from sklearn.naive_bayes import GaussianNB)
>>> gnb = GaussianNB())
KNN
>>> from sklearn import neighbors)
>>> knn = neighbors.KNeighborsClassifier(n_neighbors=5))
Unsupervised Learning Estimators
Principal Component Analysis (PCA)
>>> from sklearn.decomposition import PCA)
>>> pca = PCA(n_components=0.95))
K Means
>>> from sklearn.cluster import KMeans)
>>> k_means = KMeans(n_clusters=3, random_state=0))
Model Fitting
Supervised learning
>>> lr.fit(X, y))
>>> knn.fit(X_train, y_train))
>>> svc.fit(X_train, y_train))
Unsupervised Learning
>>> k_means.fit(X_train))
>>> pca_model = pca.fit_transform(X_train))
Prediction
Supervised Estimators
>>> y_pred = svc.predict(np.random.random((2,5))))
>>> y_pred = lr.predict(X_test))
>>> y_pred = knn.predict_proba(X_test))
Unsupervised Estimators
>>> y_pred = k_means.predict(X_test))
Evaluate Your Model's Performance
Classification Metrics
Accuracy Score
>>> knn.score(X_test, y_test))
>>> from sklearn.metrics import accuracy_score)
>>> accuracy_score(y_test, y_pred))
Classification Report
>>> from sklearn.metrics import classification_report)
>>> print(classification_report(y_test, y_pred)))
Confusion Matrix
>>> from sklearn.metrics import confusion_matrix)
>>> print(confusion_matrix(y_test, y_pred)))
Regression Metrics
Mean Absolute Error
>>> from sklearn.metrics import mean_absolute_error)
>>> y_true = [3, -0.5, 2])
>>> mean_absolute_error(y_true, y_pred))
Mean Squared Error
>>> from sklearn.metrics import mean_squared_error)
>>> mean_squared_error(y_test, y_pred))
R2 Score
>>> from sklearn.metrics import r2_score)
>>> r2_score(y_true, y_pred))
Clustering Metrics
Adjusted Rand Index
>>> from sklearn.metrics import adjusted_rand_score)
>>> adjusted_rand_score(y_true, y_pred))
Homogeneity
>>> from sklearn.metrics import homogeneity_score)
>>> homogeneity_score(y_true, y_pred))
V-measure
>>> from sklearn.metrics import v_measure_score)
>>> metrics.v_measure_score(y_true, y_pred))
Cross-Validation
>>> print(cross_val_score(knn, X_train, y_train, cv=4))
>>> print(cross_val_score(lr, X, y, cv=2))
Tune Your Model
Grid Search
>>> from sklearn.grid_search import GridSearchCV
>>> params = {"n_neighbors": np.arange(1,3), "metric": ["euclidean", "cityblock"]}
>>> grid = GridSearchCV(estimator=knn,param_grid=params)
>>> grid.fit(X_train, y_train)
>>> print(grid.best_score_)
>>> print(grid.best_estimator_.n_neighbors)
Randomized Parameter Optimization
>>> from sklearn.grid_search import RandomizedSearchCV
>>> params = {"n_neighbors": range(1,5), "weights": ["uniform", "distance"]}
>>> rsearch = RandomizedSearchCV(estimator=knn,
param_distributions=params,
cv=4,
n_iter=8,
random_state=5)
>>> rsearch.fit(X_train, y_train)
>>> print(rsearch.best_score_)
Going Further
学习完上面的例子后,你可以通过our scikit-learn tutorial for beginners来学习更多的例子。另外你可以学习matplotlib来可视化数据。
不要错过后续教程 Bokeh cheat sheet, the Pandas cheat sheet or the Python cheat sheet for data science.
Python Machine Learning: Scikit-Learn Tutorial的更多相关文章
- Python机器学习 (Python Machine Learning 中文版 PDF)
Python机器学习介绍(Python Machine Learning 中文版) 机器学习,如今最令人振奋的计算机领域之一.看看那些大公司,Google.Facebook.Apple.Amazon早 ...
- [Python & Machine Learning] 学习笔记之scikit-learn机器学习库
1. scikit-learn介绍 scikit-learn是Python的一个开源机器学习模块,它建立在NumPy,SciPy和matplotlib模块之上.值得一提的是,scikit-learn最 ...
- Python -- machine learning, neural network -- PyBrain 机器学习 神经网络
I am using pybrain on my Linuxmint 13 x86_64 PC. As what it is described: PyBrain is a modular Machi ...
- Python机器学习介绍(Python Machine Learning 中文版)
Python机器学习 机器学习,如今最令人振奋的计算机领域之一.看看那些大公司,Google.Facebook.Apple.Amazon早已展开了一场关于机器学习的军备竞赛.从手机上的语音助手.垃圾邮 ...
- 《Python Machine Learning》索引
目录部分: 第一章:赋予计算机从数据中学习的能力 第二章:训练简单的机器学习算法——分类 第三章:使用sklearn训练机器学习分类器 第四章:建立好的训练集——数据预处理 第五章:通过降维压缩数据 ...
- How do I learn machine learning?
https://www.quora.com/How-do-I-learn-machine-learning-1?redirected_qid=6578644 How Can I Learn X? ...
- Getting started with machine learning in Python
Getting started with machine learning in Python Machine learning is a field that uses algorithms to ...
- 【机器学习Machine Learning】资料大全
昨天总结了深度学习的资料,今天把机器学习的资料也总结一下(友情提示:有些网站需要"科学上网"^_^) 推荐几本好书: 1.Pattern Recognition and Machi ...
- 机器学习算法之旅A Tour of Machine Learning Algorithms
In this post we take a tour of the most popular machine learning algorithms. It is useful to tour th ...
随机推荐
- iOS手势处理
iOS手势处理 iOS手势有着如下几种: UITapGestureRecognizer UIPinchGestureRecognizer UIRotationGestureRecognizer UIS ...
- Linux系统清除多余的账号
清除多余的账号 注释掉/etc/passwd文件中nologin的行 grep 'nologin' /etc/passwd 注: 目前暂没想到用命令行替换,后面再想想
- Linux file命令详解
file: 查看文件类型 file常见命令参数 Usage: file [OPTION...] [FILE...] Determine type of FILEs. --help display th ...
- Alpha 冲刺报告(3/10)
Alpha 冲刺报告 队名:洛基小队 峻雄(组长) 已完成:开始编写角色的移动脚本 明日计划:继续学习并进行脚本编写 剩余任务:物品背包交互代码 困难:如何把各个模块的脚本整合起来 --------- ...
- [DAViCHi/SeeYa/T-ARA][원더우먼][Wonder Woman]
歌词来源:http://music.163.com/#/song?id=5371229 作曲 : 赵英秀 [作曲 : 赵英秀] [作曲 : 赵英秀] 作词 : K-Smith [作词 : KSmith ...
- js面向对象理解
js面向对象理解 ECMAScript 有两种开发模式:1.函数式(过程化),2.面向对象(OOP).面向对象的语言有一个标志,那就是类的概念,而通过类可以创建任意多个具有相同属性和方法的对象.但是, ...
- virtualbox+vagrant学习-3-Vagrant Share-2-HTTP Sharing
HTTP Sharing Vagrant Share可以创建一个可公开访问的URL端点来访问在Vagrant环境中运行的HTTP服务器.这被称为“HTTP共享”,在使用Vagrant Share时默认 ...
- App性能测试-GT
无意之间发现了GT(随身调)这个性能测试工具,该工具是由腾讯出品的开源测试工具,直接运行在手机上的“集成调测环境”. 1.下载:下载地址:开源地址:https://github.com/Tencent ...
- Kafka设计解析(四)Kafka Consumer设计解析
转载自 技术世界,原文链接 Kafka设计解析(四)- Kafka Consumer设计解析 目录 一.High Level Consumer 1. Consumer Group 2. High Le ...
- B. Sleepy Game
http://codeforces.com/problemset/problem/936/B Petya and Vasya arranged a game. The game runs by the ...