Fence Loops

The fences that surround Farmer Brown's collection of pastures have gotten out of control. They are made up of straight segments from 1 through 200 feet long that join together only at their endpoints though sometimes more than two fences join together at a given endpoint. The result is a web of fences enclosing his pastures. Farmer Brown wants to start to straighten things out. In particular, he wants to know which of the pastures has the smallest perimeter.

Farmer Brown has numbered his fence segments from 1 to N (N = the total number of segments). He knows the following about each fence segment:

  • the length of the segment
  • the segments which connect to it at one end
  • the segments which connect to it at the other end.

Happily, no fence connects to itself.

Given a list of fence segments that represents a set of surrounded pastures, write a program to compute the smallest perimeter of any pasture. As an example, consider a pasture arrangement, with fences numbered 1 to 10 that looks like this one (the numbers are fence ID numbers):

           1
+---------------+
|\ /|
2| \7 / |
| \ / |
+---+ / |6
| 8 \ /10 |
3| \9 / |
| \ / |
+-------+-------+
4 5

The pasture with the smallest perimeter is the one that is enclosed by fence segments 2, 7, and 8.

PROGRAM NAME: fence6

INPUT FORMAT

Line 1: N (1 <= N <= 100)
Line 2..3*N+1:

N sets of three line records:

  • The first line of each record contains four integers: s, the segment number (1 <= s <= N); Ls, the length of the segment (1 <= Ls <= 255); N1s (1 <= N1s <= 8) the number of items on the subsequent line; and N2sthe number of items on the line after that (1 <= N2s <= 8).
  • The second line of the record contains N1 integers, each representing a connected line segment on one end of the fence.
  • The third line of the record contains N2 integers, each representing a connected line segment on the other end of the fence.

SAMPLE INPUT (file fence6.in)

10
1 16 2 2
2 7
10 6
2 3 2 2
1 7
8 3
3 3 2 1
8 2
4
4 8 1 3
3
9 10 5
5 8 3 1
9 10 4
6
6 6 1 2
5
1 10
7 5 2 2
1 2
8 9
8 4 2 2
2 3
7 9
9 5 2 3
7 8
4 5 10
10 10 2 3
1 6
4 9 5

OUTPUT FORMAT

The output file should contain a single line with a single integer that represents the shortest surrounded perimeter.

SAMPLE OUTPUT (file fence6.out)

12

——————————————————————

听说是应该拿floyd写最小环,但是始终没想出来怎么写,结果发现好简单啊……果然还是自己蒟蒻

回归floyd的三维形式g[k,i,j]也就是用前k个点更新了i,j,然后我们发现我们求的环就是

i到j不包括k的最短路+i到k距离+k到j距离

我们更新一次floyd二维矩阵存储的就是g[k-1,i,j],然后我们得到的k点是新的,未被使用过,这样就可以做了

【这道题图给的形式真是好恶心啊……】

 /*
ID: ivorysi
PROG: fence6
LANG: C++
*/
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
#include <set>
#include <vector>
#include <string.h>
#define siji(i,x,y) for(int i=(x);i<=(y);++i)
#define gongzi(j,x,y) for(int j=(x);j>=(y);--j)
#define xiaosiji(i,x,y) for(int i=(x);i<(y);++i)
#define sigongzi(j,x,y) for(int j=(x);j>(y);--j)
#define inf 0x1f1f1f1f
#define ivorysi
#define mo 97797977
#define ha 974711
#define ba 47
#define fi first
#define se second
#define pii pair<int,int>
using namespace std;
typedef long long ll;
int s,len[],num[][],cnt,a1[],a2[],use[];
int g[][],f[][];
int n,t1,t2,ans;
void solve(){
scanf("%d",&n);
siji(i,,n) {
scanf("%d",&s);
scanf("%d",&len[s]);
scanf("%d%d",&t1,&t2); bool f1=,f2=;
siji(j,,t1) {
scanf("%d",&a1[j]);
if(use[a1[j]]) f1=;
}
siji(j,,t2) {
scanf("%d",&a2[j]);
if(use[a2[j]]) f2=;
}
if(num[s][]>=)continue;
if(f1) {
num[s][++num[s][]]=++cnt;
siji(j,,t1) {
num[a1[j]][++num[a1[j]][]]=cnt;
}
}
if(f2) {
num[s][++num[s][]]=++cnt;
siji(j,,t2) {
num[a2[j]][++num[a2[j]][]]=cnt;
}
}
use[s]=;
}
memset(g,inf,sizeof(g));
memset(f,inf,sizeof(f));
siji(i,,n) {
g[num[i][]][num[i][]]=g[num[i][]][num[i][]]=len[i];
f[num[i][]][num[i][]]=f[num[i][]][num[i][]]=len[i];
}
siji(i,,cnt) {g[i][i]=;f[i][i]=;}
ans=inf;
siji(k,,cnt) {
xiaosiji(i,,k) {//因为不能用k点所以是<k
xiaosiji(j,i+,k) {
ans=min(ans,g[i][j]+f[i][k]+f[k][j]);
}
}
siji(i,,cnt) {
siji(j,,cnt) {
g[i][j]=min(g[i][j],g[i][k]+g[k][j]);
}
}
} printf("%d\n",ans);
}
int main(int argc, char const *argv[])
{
#ifdef ivorysi
freopen("fence6.in","r",stdin);
freopen("fence6.out","w",stdout);
#else
freopen("f1.in","r",stdin);
#endif
solve();
}

USACO 4.1 Fence Loops(Floyd求最小环)的更多相关文章

  1. USACO 4.1 Fence Loops

    Fence Loops The fences that surround Farmer Brown's collection of pastures have gotten out of contro ...

  2. 2017"百度之星"程序设计大赛 - 资格赛【1001 Floyd求最小环 1002 歪解(并查集),1003 完全背包 1004 01背包 1005 打表找规律+卡特兰数】

    度度熊保护村庄 Accepts: 13 Submissions: 488 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/3276 ...

  3. Floyd求最小环!(转载,非原创) 附加习题(原创。)HDU-1599

    //Floyd 的 改进写法可以解决最小环问题,时间复杂度依然是 O(n^3),储存结构也是邻接矩阵 int mincircle = infinity; Dist = Graph; ;k<nVe ...

  4. 2018.09.15 hdu1599find the mincost route(floyd求最小环)

    传送门 floyd求最小环的板子题目. 就是枚举两个相邻的点求最小环就行了. 代码: #include<bits/stdc++.h> #define inf 0x3f3f3f3f3f3f ...

  5. 【BZOJ 1027】 (凸包+floyd求最小环)

    [题意] 某公司加工一种由铁.铝.锡组成的合金.他们的工作很简单.首先进口一些铁铝锡合金原材料,不同种类的原材料中铁铝锡的比重不同.然后,将每种原材料取出一定量,经过融解.混合,得到新的合金.新的合金 ...

  6. 算法复习——floyd求最小环(poj1734)

    题目: 题目描述 N 个景区,任意两个景区之间有一条或多条双向的路来连接,现在 Mr.Zeng 想找一条旅游路线,这个路线从A点出发并且最后回到 A 点,假设经过的路线为 V1,V2,....VK,V ...

  7. floyd求最小环 模板

    http://www.cnblogs.com/Yz81128/archive/2012/08/15/2640940.html 求最小环 floyd求最小环 2011-08-14 9:42 1 定义: ...

  8. CF 1206D - Shortest Cycle Floyd求最小环

    Shortest Cycle 题意 有n(n <= 100000)个数字,两个数字间取&运算结果大于0的话连一条边.问图中的最小环. 思路 可以发现当非0数的个数很大,比如大于200时, ...

  9. 弗洛伊德Floyd求最小环

    模板: #include<bits/stdc++.h> using namespace std; ; const int INF = 0xffffff0; ]; void Solve(in ...

  10. POJ1734 Sightseeing trip (Floyd求最小环)

    学习了一下用Floyd求最小环,思路还是比较清晰的. 1 #include<iostream> 2 #include<cstdio> 3 #include<cstring ...

随机推荐

  1. ssis的script task作业失败(调用外部dll)

    原文 ssis的script task作业失败 我的ssis作业包里用了一个script task,会查询一个http的页面接口,获取json数据后解析然后做后续处理,其中解析json引用了本地目录下 ...

  2. LigerUI一个前台框架增、删、改asp.net代码

    LigerUI一个前台框架增.删.改asp.net代码的实现   先上代码:前台代码 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Tran ...

  3. win8安装tfs2010提示未启用iis6.0未启用兼容模式需要静态内容组件

    笔者的电脑由于安装TFS2010就提示这个错误,当时网上也没有很好地办法,重装iis组件也不行.如果你同样没有找到更好的办法,建议安装tfs2012,但在vs2010使用tfs2012是无法创建团队项 ...

  4. Javascript多线程引擎(五)

    Javascript多线程引擎(五)之异常处理 C语言没有提供一个像Java一样的异常处理机制, 这就带来了一个问题, 对于一个子函数中发生异常后, 需要在父函数调用子函数的位置进行Check, 如果 ...

  5. 存储过程的参数问题与C#中的调用

    1. 带参数的存储过程 set ANSI_NULLS ON set QUOTED_IDENTIFIER ON GO ALTER PROCEDURE [dbo].[sp_select_gua] @num ...

  6. IP 首部检验和算法

    原创博文,转载请注明出处. 在学习TCP/IP 详解的过程中遇到了不止一次的关于检验和的概念,在吸取了他人理解的前提下,我决定用Wireshark 进行抓包分析. 首先我们得知道IP数据包格式 首先把 ...

  7. canvas 之刮刮卡

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  8. 开发框架(WinForm)3

    我的开发框架(WinForm)3 今天继续给大家介绍核心库的IOC的使用,在我的框架里,IOC使用的比较简单,主要是用于解除模块间的耦合和实例化接口. 1.接口说明,IocContainer接口比较简 ...

  9. 关于前端JS模块加载器实现的一些细节

    最近工作需要,实现一个特定环境的模块加载方案,实现过程中有一些技术细节不解,便参考 了一些项目的api设计约定与实现,记录下来备忘. 本文不探讨为什么实现模块化,以及模块化相关的规范,直接考虑一些技术 ...

  10. Supervisor 管理后台守护进程

    Supervisor 管理后台守护进程 参考原文如下: http://codinn.com/people/brant/notes/110948/ 做了一些注释 +++++++++++引用开始+++++ ...