http://codeforces.com/contest/713

题目大意:给你一个长度为n的数组,每次有+1和-1操作,在该操作下把该数组变成严格递增所需要的最小修改值是多少

思路:遇到这类题型,最普遍的方法就是把严格递增给变为递增就好了,所以我们对所有的a进行处理,a[i]-=i,然后再dp。

我们对dp进行如下的定义:定义dp[i][j],dp[i][j]表示前i个数,1~i-1个数的val都<=b[j],目前第i个数修改成b[j](即第j大的数),所需要的最小花费dp[i][j] = min(dp[i][j - 1], dp[i - 1][j] + abs(a[i] - b[j]));

因此我们就进行转移就好了

//看看会不会爆int!数组会不会少了一维!
//取物问题一定要小心先手胜利的条件
#include <bits/stdc++.h>
using namespace std;
#define LL long long
#define ALL(a) a.begin(), a.end()
#define pb push_back
#define mk make_pair
#define fi first
#define se second
#define haha; printf("haha\n");
/*
我们定义,dp[i][j]表示前i个数,1~i-1个数的val都<=b[j],
目前第i个数修改成b[j](即第j大的数),所需要的最小花费
dp[i][j] = min(dp[i][j - 1], dp[i - 1][j] + abs(a[i] - b[j]));
*/
const int maxn = + ;
LL dp[maxn][maxn];
LL a[maxn], b[maxn];
int n; int main(){
scanf("%d", &n);
for (int i = ; i <= n; i++){
scanf("%d", a + i);
a[i] -= i;
b[i] = a[i];
}
sort(b + , b + n + );
for (int i = ; i <= n; i++){
dp[i][] = dp[i - ][] + abs(a[i] - b[]);
for (int j = ; j <= n; j++){
dp[i][j] = min(dp[i][j - ], dp[i - ][j] + abs(a[i] - b[j]));
}
}
printf("%I64d\n", dp[n][n]);
return ;
}

严格递增类的dp Codeforces Round #371 (Div. 1) C dp的更多相关文章

  1. Codeforces Round #371 (Div. 1)

    A: 题目大意: 在一个multiset中要求支持3种操作: 1.增加一个数 2.删去一个数 3.给出一个01序列,问multiset中有多少这样的数,把它的十进制表示中的奇数改成1,偶数改成0后和给 ...

  2. DP Codeforces Round #303 (Div. 2) C. Woodcutters

    题目传送门 /* 题意:每棵树给出坐标和高度,可以往左右倒,也可以不倒 问最多能砍到多少棵树 DP:dp[i][0/1/2] 表示到了第i棵树时,它倒左或右或不动能倒多少棵树 分情况讨论,若符合就取最 ...

  3. DP Codeforces Round #260 (Div. 1) A. Boredom

    题目传送门 /* 题意:选择a[k]然后a[k]-1和a[k]+1的全部删除,得到点数a[k],问最大点数 DP:状态转移方程:dp[i] = max (dp[i-1], dp[i-2] + (ll) ...

  4. 数学+DP Codeforces Round #304 (Div. 2) D. Soldier and Number Game

    题目传送门 /* 题意:这题就是求b+1到a的因子个数和. 数学+DP:a[i]保存i的最小因子,dp[i] = dp[i/a[i]] +1;再来一个前缀和 */ /***************** ...

  5. 树形DP Codeforces Round #135 (Div. 2) D. Choosing Capital for Treeland

    题目传送门 /* 题意:求一个点为根节点,使得到其他所有点的距离最短,是有向边,反向的距离+1 树形DP:首先假设1为根节点,自下而上计算dp[1](根节点到其他点的距离),然后再从1开始,自上而下计 ...

  6. DP Codeforces Round #FF (Div. 1) A. DZY Loves Sequences

    题目传送门 /* DP:先用l,r数组记录前缀后缀上升长度,最大值会在三种情况中产生: 1. a[i-1] + 1 < a[i+1],可以改a[i],那么值为l[i-1] + r[i+1] + ...

  7. 递推DP Codeforces Round #260 (Div. 1) A. Boredom

    题目传送门 /* DP:从1到最大值,dp[i][1/0] 选或不选,递推更新最大值 */ #include <cstdio> #include <algorithm> #in ...

  8. Codeforces Round #548 (Div. 2) C dp or 排列组合

    https://codeforces.com/contest/1139/problem/C 题意 一颗有n个点的树,需要挑选出k个点组成序列(可重复),按照序列的顺序遍历树,假如经过黑色的边,那么这个 ...

  9. Codeforces Round #536 (Div. 2) E dp + set

    https://codeforces.com/contest/1106/problem/E 题意 一共有k个红包,每个红包在\([s_i,t_i]\)时间可以领取,假如领取了第i个红包,那么在\(d_ ...

随机推荐

  1. pull类型消息中间件-消息消费者(二)

    消费者的实例化 关于consumer的默认实现,metaq有两种: DefaultMQPullConsumer:由业务方主动拉取消息 DefaultMQPushConsumer:通过业务方注册回调方法 ...

  2. Ajax的基本请求/响应模型

    一.Ajax工作核心 Ajax的核心是JavaScript对象XMLHttpRequest(简称XHR).它是一种支持异步请求的技术.可以通过使用XHR对象向服务器提出请求并处理响应,而不阻塞用户. ...

  3. 【转】HTML-based script和URL-based script两种脚本录制方式

    在Web(HTTP/HTML)录制中,有2种重要的录制模式.用户该选择那种录制模式呢?HTML-mode录制是缺省也是推荐的录制模式.它录制当前网页中的HTML动作.在录制会话过程中不会录制所有的资源 ...

  4. PAT 团体程序设计天梯赛-练习集 L1-005. 考试座位号

    每个PAT考生在参加考试时都会被分配两个座位号,一个是试机座位,一个是考试座位.正常情况下,考生在入场时先得到试机座位号码,入座进入试机状态后,系统会显示该考生的考试座位号码,考试时考生需要换到考试座 ...

  5. 编写高质量iOS代码的52个有效方法2-1

    一.变量的定义位置(用{}声明示例变量或者用@property属性声明实例变量) 1.用{}声明示例变量: 此方法生命的实例变量,编译器在编译时,会自动计算其偏移量(表示该变量距离存放对象的内存区域的 ...

  6. KindeEditor图片上传插件用法

    因业务需要找了款插件 KindeEditor编辑器确认挺好用,但无奈技术有限,上传配置不知,故问度娘! 图片上传对于部分新手来说有时候是一件非常头疼的事,今天来分享一下项目中使用到的这个插件Kinde ...

  7. gsl安装(Linux系统)

    1. 在gnu的ftp站点http://ftp.gnu.org/gnu/gsl/ 上, 下载最新的gsl-2.x.tar.gz 2. 解压下载好的gsl-2.x.tar.gz 压缩包,$tar -zx ...

  8. 利用POI获取Excel中图片和图片位置

    利用POI获取Excel中图片和图片位置(支持excel2003or2007多sheet) 转自:http://blog.csdn.net/delongcpp/article/details/8833 ...

  9. eclipse启动Heritrix

    首先下载heritrix-1.14.4-src源码.可以在http://sourceforge.net/projects/archive-crawler/files/archive-crawler ( ...

  10. 杭电21题 Palindrome

    Problem Description A palindrome is a symmetrical string, that is, a string read identically from le ...