It's not a Bug, It's a Feature!
Time Limit: 5000MS   Memory Limit: 30000K
Total Submissions: 1231   Accepted: 466

Description

It is a curious fact that consumers buying a new software product generally do not expect the software to be bug-free. Can you imagine buying a car whose steering wheel only turns to the right? Or a CD-player that plays only CDs with country music on them? Probably not. But for software systems it seems to be acceptable if they do not perform as they should do. In fact, many software companies have adopted the habit of sending out patches to fix bugs every few weeks after a new product is released (and even charging money for the patches).
Tinyware Inc. is one of those companies. After releasing a new word processing software this summer, they have been producing patches ever since. Only this weekend they have realized a big problem with the patches they released. While all patches fix some bugs, they often rely on other bugs to be present to be installed. This happens because to fix one bug, the patches exploit the special behavior of the program due to another bug.

More formally, the situation looks like this. Tinyware has found a total of n bugs B = {b1, b2, ..., bn} in their software. And they have released m patches p1, p2, ..., pm. To apply patch pi to the software, the bugs Bi
+ in B have to be present in the software, and the bugs Bi
- in B must be absent (of course Bi
+ ∩ Bi
- = Φ). The patch then fixes the bugs Fi
- in B (if they have been present) and introduces the new bugs Fi
+ in B (where, again, Fi
+ ∩ Fi
- = Φ).

Tinyware's problem is a simple one. Given the original version of their software, which contains all the bugs in B, it is possible to apply a sequence of patches to the software which results in a bug- free version of the software? And if so, assuming that every patch takes a certain time to apply, how long does the fastest sequence take?

Input

The input contains several product descriptions. Each description starts with a line containing two integers n and m, the number of bugs and patches, respectively. These values satisfy 1 <= n <= 20 and 1 <= m <= 100. This is followed by m lines describing the m patches in order. Each line contains an integer, the time in seconds it takes to apply the patch, and two strings of n characters each.

The first of these strings describes the bugs that have to be present or absent before the patch can be applied. The i-th position of that string is a ``+'' if bug bi has to be present, a ``-'' if bug bi has to be absent, and a `` 0'' if it doesn't matter whether the bug is present or not.

The second string describes which bugs are fixed and introduced by the patch. The i-th position of that string is a ``+'' if bug bi is introduced by the patch, a ``-'' if bug bi is removed by the patch (if it was present), and a ``0'' if bug bi is not affected by the patch (if it was present before, it still is, if it wasn't, is still isn't).

The input is terminated by a description starting with n = m = 0. This test case should not be processed.

Output

For each product description first output the number of the product. Then output whether there is a sequence of patches that removes all bugs from a product that has all n bugs. Note that in such a sequence a patch may be used multiple times. If there is such a sequence, output the time taken by the fastest sequence in the format shown in the sample output. If there is no such sequence, output ``Bugs cannot be fixed.''.

Print a blank line after each test case.

Sample Input

3 3
1 000 00-
1 00- 0-+
2 0-- -++
4 1
7 0-0+ ----
0 0

Sample Output

Product 1
Fastest sequence takes 8 seconds. Product 2
Bugs cannot be fixed.

Source

好坑的一题 ,刚开始没有考虑到不同走的方法是不等价的,所以错了很多次,用个优先队列就可以了,直接上代码,但不知道,那些0m的是怎么搞的,我把能优化的都优化了啊,像什么二进制,我估计还有什么好的优化方法吧,等以后再看看
#include<stdio.h>
#include<iostream>
#include<string.h>
#include<queue>
using namespace std;
int n,m,time[200],before[2][200],after[2][200],visit[2000000];
struct bugtree{int time ,bugnum;
bool operator <(const bugtree a)const //重载比较函数,为下面队作准备,也可以在外面
{
if(time>a.time)//这里是大于号,要小心这里和下面优先队列的排列顺序是有很大关系的!
return true;
else
return false ;
} };
bool bugcan(int i,bugtree f)//判断是否符合第m种的操作
{
int ignore;
ignore=f.bugnum&(~before[0][i]);//把不用考虑的全部置成0其它的不变
// printf("%d ignore\n",ignore);
if(ignore==before[1][i])//如果在不能有的位置上有1,就要返回假
return true;
return false ;
}
int bfs()
{
int i;
bugtree temp,ss;
priority_queue < bugtree > q;
memset(visit,-1,sizeof(visit));
while(!q.empty())//清空
q.pop();
temp.time=0;
temp.bugnum=(1<<n)-1;
//printf("temp %d\n",temp.bugnum);
visit[temp.bugnum]=temp.time;
q.push(temp);
while(!q.empty())
{
temp=q.top();
q.pop();
if(temp.bugnum==0)
{
return temp.time;//找到最小值,在这里判断会找到最小值
}
for(i=0;i<m;i++)
{ if(bugcan(i,temp))//满足第m条件
{ ss.time=temp.time+time[i];
ss.bugnum=(temp.bugnum|after[0][i])&after[1][i];
// printf("%d i%d ss\n",i,ss.bugnum);
if((visit[ss.bugnum]<0)||(ss.time<visit[ss.bugnum]))//未访问过,或者,时间更少,都加入队列
{
// printf(" i%d %di\n",i,ss.bugnum);
visit[ss.bugnum]=ss.time;
q.push(ss);
} }
}
}
return -1;//没有搜到
}
int main()
{
int i,j,re,tcase;
char c;tcase=1;char strtemp[200];
while(scanf("%d%d",&n,&m)!=EOF)
{ if(n==0&&m==0)
break;
for(i=0;i<m;i++ )
{
scanf("%d",&time[i]);
getchar();
before[0][i]=0;
before[1][i]=0;
after[0][i]=0;
after[1][i]=0;
for( j=0;j<n;j++)//是否能操作,如果把两者分开了,就可以全部用二进制进行操作,对于后面的搜索是非常有用的
{
c=getchar();
before[0][i]=before[0][i]<<1;//是第i个,不能用j
before[1][i]=before[1][i]<<1;//在每一个循环都要左移,为了记录每一个位置的相应的变化
if(c=='0')
{
before[0][i]=before[0][i]|1;//用1来表示是进行操作 }
else if(c=='-')//要将-和0分开,这是两种不同的操作
{
// before[1][i]=before[1][i];//用1来标记是否要这个条件
}
else if(c=='+')
{
before[1][i]=before[1][i]|1;
} }
getchar();//将中间的空格号收掉
for( j=0;j<n;j++)//改掉bug
{
c=getchar();
if(c=='+')
{
after[0][i]=after[0][i]<<1|1;//加用1或,不用管的地方用0
after[1][i]=after[1][i]<<1|1;
}
else if(c=='-')
{
after[0][i]=after[0][i]<<1;
after[1][i]=after[1][i]<<1;//减用0且,不用管的地方用1
}
else if(c=='0')
{
after[0][i]=after[0][i]<<1;
after[1][i]=(after[1][i]<<1)|1;
} }
gets(strtemp);//将最后的回车收掉 }
//printf("%d %dafter \n",after[0][0],after[1][0]);
re=bfs();
printf("Product %d\n",tcase++);
if(re!=-1)
{
printf("Fastest sequence takes %d seconds.\n\n",re);
}
else{ printf("Bugs cannot be fixed.\n\n");
} } return 0;
}

poj1483 It's not a Bug, It's a Feature!的更多相关文章

  1. [有意思]The IT workers of Star Wars -- That's not a bug. It's a feature

    Yeah, that Artoo is kinda mouthy... ... now select, "restore to factory settings." That'll ...

  2. 【最短路】【位运算】It's not a Bug, it's a Feature!

    [Uva658] It's not a Bug, it's a Feature! 题目略 UVA658 Problem PDF上有 试题分析:     本题可以看到:有<=20个潜在的BUG,那 ...

  3. UVA 658 It's not a Bug, it's a Feature! (最短路,经典)

    题意:有n个bug,有m个补丁,每个补丁有一定的要求(比如某个bug必须存在,某个必须不存在,某些无所谓等等),打完出来后bug还可能变多了呢.但是打补丁是需要时间的,每个补丁耗时不同,那么问题来了: ...

  4. UVa 658 (Dijkstra) It's not a Bug, it's a Feature!

    题意: 有n个BUG和m个补丁,每个补丁用一个串表示打补丁前的状态要满足的要求,第二个串表示打完后对补丁的影响,还有打补丁所需要的时间. 求修复所有BUG的最短时间. 分析: 可以用n个二进制位表示这 ...

  5. UVA 658 It's not a Bug, it's a Feature!

    这个题目巧妙之处在于用二进制的每个位1,0分别表示bug的有无,以及实施补丁对相应bug的要求以及实施后的对bug的影响. 软件bug的状态:1表示相应bug仍然存在,0表示已经修复.这样可以将软件的 ...

  6. UVa 658 - It's not a Bug, it's a Feature!(Dijkstra + 隐式图搜索)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  7. UVa 658 It's not a Bug, it's a Feature! (状态压缩+Dijstra)

    题意:首先给出n和m,表示有n个bug和m个补丁.一开始存在n个bug,用1表示一个bug存在0表示不存在,所以一开始就是n个1,我们的目的是要消除所有的bug, 所以目标状态就是n个0.对于每个补丁 ...

  8. UVA - 658 It's not a Bug, it's a Feature! (隐式图的最短路,位运算)

    隐式的图搜索,存不下边,所以只有枚举转移就行了,因为bug的存在状态可以用二进制表示,转移的时候判断合法可以用位运算优化, 二进制pre[i][0]表示可以出现的bug,那么u&pre[i][ ...

  9. 洛谷 题解 UVA658 【这不是bug,而是特性 It's not a Bug, it's a Feature!】

    [题意] 补丁在修正\(BUG\)时,有时也会引入新的\(BUG\),假定有\(n(n<=20)\)个潜在\(BUG\),和\(m(m<=100)\)个补丁,每个补丁用两个长度为\(n\) ...

随机推荐

  1. 新手sqlserver数据库dba需要注意的小细节

    前言:任何的优化和修改都是以业务情况为前提,可能有的写的有误或者不准确的地方,欢迎各位来拍砖. 1.在创建db的时候自增长建议设置成按MB(M)增长,步长根据业务量来设置,一般情况建议设置100-20 ...

  2. 原生JS的DOM节点操作

    DOM(Document Object Model/文档对象模型)是针对HTML和XML文档的一个API.DOM节点树:在文档中出现的空格.回车.标签.注释.文本.doctype.标签等都属于DOM节 ...

  3. WebStorm中Node.js项目配置教程(1)——创建项目

    Node.js绝对是一个web开发的热点话题,作为web神器的WebStorm也是开发Node.js的佼佼者. 接下来就Node.js项目在WebStorm的配置操作就行详细的讲解,首先是创建项目.两 ...

  4. 2.3 LINQ查询表达式中 使用select子句 指定目标数据

    本篇讲解LINQ查询的三种形式: 查询对象 自定义查询对象某个属性 查询匿名类型结果 [1.查询结果返回集合元素] 在LINQ查询中,select子句和from子句都是必备子句.LINQ查询表达式必须 ...

  5. HDU4565 && 2013年长沙邀请赛A题

    部分转自http://blog.csdn.net/crazy______/article/details/9021169 #include<cstdio> using namespace ...

  6. 常见ActiveX控件下载大全

    ActiveX是微软对于一系列策略性面向对象程序技术和工具的称呼,ActiveX控件可以在Windows窗体和Web程序上使用,所以不管是什么语 言开发的应用程序只要在windows窗体和html页面 ...

  7. Extjs grid分页多选记忆功能

    很多同事在用extjs grid做分页的时候,往往会想用grid的多选功能来实现导出Excel之类的功能(也就是所谓的多选记忆功能),但在选选择下一页的时候 上一页选中的已经清除 这是因为做分页的时候 ...

  8. NFTS数据流

    NFTS数据流 NTFS交换数据流(alternate data streams,简称ADS)是NTFS磁盘格式的一个特性,在NTFS文件系统下,每一个文件都能够存在多个数据流,就是说除了主文件流之外 ...

  9. javascript脚本化文档

    1.getElememtById /** * 获取指定id的的元素数组 */ function getElements(/*ids...*/) { var elements = {}; for(var ...

  10. 值为NULL的对象指针

    相信大家对NULL不会很陌生,NULL 是一个标准规定的宏定义,用来表示空指针常量,当一个指针变量被赋值为NULL时,表示它不再指向任何有效地址,无法在访问任何数据.在VS2012库文件stdio.h ...