接下来讲一个目前经常被用到的模型,来自牛津大学的VGG,该网络目前还有很多改进版本,这里只讲一下最初的模型,分别从论文解析和模型理解两部分组成。

一、论文解析

一:摘要

……

从Alex-net发展而来的网络主要修改一下两个方面:

1,在第一个卷基层层使用更小的filter尺寸和间隔;

2,在整个图片和multi-scale上训练和测试图片。

二:网络配置

2.1配置

2.1.1 小的Filter尺寸为3*3

卷积的间隔s=1;3*3的卷基层有1个像素的填充。

1:3*3是最小的能够捕获上下左右和中心概念的尺寸。

2:两个3*3的卷基层的有限感受野是5*5;三个3*3的感受野是7*7,可以替代大的filter尺寸

3:多个3*3的卷基层比一个大尺寸filter卷基层有更多的非线性,使得判决函数更加具有判决性。

4:多个3*3的卷积层比一个大尺寸的filter有更少的参数,假设卷基层的输入和输出的特征图大小相同为C,那么三个3*3的卷积层参数个数3*(3*3*C*C)=27CC;一个7*7的卷积层参数为49CC;所以可以把三个3*3的filter看成是一个7*7filter的分解(中间层有非线性的分解)。

2.1.2 1*1 filter:

作用是在不影响输入输出维数的情况下,对输入线进行线性形变,然后通过Relu进行非线性处理,增加网络的非线性表达能力。

Pooling:2*2,间隔s=2;

2.2 结构

和之前流行的三阶段网络不通的是,本文是有5个max-pooling层,所以是5阶段卷积特征提取。每层的卷积个数从首阶段的64个开始,每个阶段增长一倍,直到达到最高的512个,然后保持。

基本结构A:

Input(224,224,3)→64F(3,3,3,1)→max-p(2,2)→128F(3,3,64,1)→max-p(2,2) →256F(3,3,128,1)→256F(3,3,256,1)→max-p(2,2)→512F(3,3,256,1)→512F(3,3,512,1)→max-p(2,2)→512F(3,3,256,1)→512F(3,3,512,1)→max-p(2,2)→4096fc→4096fc→1000softmax

8个卷基层,3个全连接层,共计11层;作者只说明了使用3*3filter的原因,至于层数,阶段数,特征数为什么这么设计,作者并没有说明。

参数个数:网络E和OverFeat模型参数差不多

B:在A的stage2 和stage3分别增加一个3*3的卷基层,10个卷积层,总计13层

C:在B的基础上,stage3,stage4,stage5分别增加1*1的卷积层,13个卷基层,总计16层

D:在C的基础上,stage3,stage4,stage5分别增加3*3的卷积层,13个卷基层,总计16层

E:在D的基础上,stage3,stage4,stage5分别增加3*3的卷积层,16个卷基层,总计19层

三,分类框架

3.1训练参数设置

Minibatch=256,其它的都一样。

作者发现,尽管VGG比Alex-net有更多的参数,更深的层次;但是VGG需要很少的迭代次数就开始收敛。这是因为

1,深度和小的filter尺寸起到了隐式的规则化的作用

2,一些层的pre-initialisation

pre-initialisation:网络A的权值W~(0,0.01)的高斯分布,bias为0;由于存在大量的ReLU函数,不好的权值初始值对于网络训练影响较大。为了绕开这个问题,作者现在通过随机的方式训练最浅的网络A;然后在训练其他网络时,把A的前4个卷基层(感觉是每个阶段的以第一卷积层)和最后全连接层的权值当做其他网络的初始值,未赋值的中间层通过随机初始化。

Multi-scale 训练

把原始 image缩放到最小边S>224;然后在full image上提取224*224片段,进行训练。

方法1:在S=256,和S=384上训练两个模型,然后求平均

方法2:类似OverFeat测试时使用的方法,在[Smin,Smax]scale上,随机选取一个scale,然后提取224*224的图片,训练一个网络。这种方法类似图片尺寸上的数据增益。

3.2 测试

测试阶段的方法和OverFeat测试方法相同,首先选定一个scale:Q,然后在这个图片上应用卷积网络,在最后一个卷积阶段产生unpooled FM,然后利用sliding window方法,每个pooling window产生一个分类输出,然后融合各个pooling window的结果,得到最终分类。这样比10-view更加高效,只需计算一次卷积过程。

3.3 部署细节

利用C++ Caffe toolbox,在4个Titan Gpu上并行计算,比单独GPU快3.75倍,每个网络差不多2-3周。

四,分类实验

4.1 测试阶段single-scale对比

A vs A-LRN:A-LRN结果没有A好,说明LRN作用不大。

A vs B,C,D,E:越深越好

A vs C:增加1*1filter,即增加额外的非线性确实提升效果

C vs D:3*3的filter比1*1filter要好,使用较大的filter能够捕捉更大的空间特征。

训练方法:在scale区间[256;512]通过scale增益来训练网络,比在固定的两个S=256和S=512,结果明显提升。Multi-scale训练确实很有用,因为ZF论文中,卷积网络对于缩放有一定的不变性,通过multi-scale训练可以增加这种不变性的能力。

4.2 Multi-scale训练

方法1:single-scale训练 S,multi-scale测试 {S-32,S,S+32}

方法2:multi-scale训练[Smin;Smax],multi-scale测试{Smin,middle,Smax}

结果:此处结果为B’

1 B vs B’, C vs C’,……:single-scale训练,利用multi-scale测试,有0.2%的top-5提升。

2 B-256 vs B-384 ……:single-scale在256和348上训练,无论用什么测试方法,结果基本上差不多。说明网络在单个scale上提取能力有限。

3 multi-scale训练,multi-scale测试,对于网络提升明显,D’和E’的top-5分类达到了7.5%。

4.3 模型融合

通过结果求平均,融合上面不同网络的结果。

模型融合结果如上图,比较有意思的是,模型D和E两个顶尖模型融合的结果比融合7个模型的结果还要好。这个比较有意思,模型融合个数多,反而没有两个网络的好。这个是为什么?没有想明白。

4.4和其他网络比较

本文的结果和博文9中的结果有一些差距,感觉可能是训练平台和方法的原因,不同的训练平台和方法对于结果也有影响。

五,定位

5.1 定位网络

和OverFeat的方法类似,使用模型D(参数最少,表现最好)通过回归函数来替换分类器,两种分类方法:SCR(single-classregression),用一个回归函数来学习预测所有类别的bounding box;PCR(per-class regression)每个类别有自己单独的一个回归函数。

训练:分别在S=256和S=384上训练两个模型,网络反馈学习时,探究了两种情况1,fine tuning整个网络;2,只调整全连接层。

测试:

第一种测试框架:定位网络只应用在图像的裁剪中心,用于比较不同的网络修改下性能。

1,发现fine-tuning整个网络的定位性能,比值调整全连接层权值的定位结果要好。

2,PCR比SCR结果好,这个和OverFeat的结果相反。

所以最好的定位方法是采用PCR,fine-tuning整个网络。

第二种测试框架:利用OverFeat的贪婪融合过程(不使用offset pooling),在整个图像上密集应用定位网络;首先根据softmax分类结果给定bounding box的置信得分,然后融合空间相似的bounding box,最后选取最大置信得分的bounding box。

在不同scale下,定位结果。

1,适当的scale对于定位结果有影响S=384好于S=256。

2,multi-scale比single-scale好。

3,multi-model fusion会更好。

和其它state-of-the-art方法比较:

在使用较少的scale下,在不使用offset pooling情况下,本文的结果比OverFeat提高很多;曹成这种提高的原因主要在于网络结构上的不同,好网络,好分类,好定位,估计还有好检测。

六,结论

深度是获得好结果的关键。

一些理解和困惑

感觉本文在网络探讨阶段和博文9中探索最优网络比较类似;都是首先提出一个结果不错的基础网络A,然后在网络A上进行一些列的修改,一步一步地提高网络性能,进而探索好的网络设计应该是什么样的;博文9平衡网络各个因素探讨的方式比本文比计较复杂度情况下增加深度,更加精细。而且两篇文章的关于深度的结论相同,深度可以提升结果,但是深度会饱和。

这里最大的疑问就是他们的网络A是怎么提来的。

博文9中的A结构:

Input(224,224,3)→64F(7,7,3,s=2) →max-p(3,3,3)→128F(5,5,64) →max-p(2,2,2) →256F(3,3,128)→256F(3,3,256)→256F(3,3,256)→spp(6*6,3*3,2*2,1*1)→4096fc→4096fc→softmax

感觉博文9的结构借鉴了Alex-net,ZF-net和本文的VGG,例如这种三段式结构是从瘦身版的Alex-net和ZF-net中来的,第一个卷积层有64个filter而不是96个,感觉是借鉴了本文第一卷积层的结构;还有就是可能依据本文或OverFeat中剔除了LRN。

但是本文的结构就找不到关系了, 5阶段,filter的个数尺寸,网络结构等64-128-256-512-512;使用3*3小filter作者已经解释了原因,但是这个关键的网络结构作者并没有给出具体的设计依据,而是直接给出了结果;感觉一个是凭借经验,再有就是凭借实验;结合博文9中的观点,感觉VGG网络还可以利用其中层析替换思想来提高分类结果。

里一个困惑,就是“PCR比SCR结果好,这个和OverFeat的结果相反”;OverFeat中在三scale下 SCR-vs-PCR为31.3-vs-44.1;SCR要明显好于PCR,OverFeat作者的解释是PCR顶层有更多的回归函数,继而有更多的参数,而每个类别的训练样本有限,导致每个类别的回归函数不能够很好的训练;但是本文作者的网络中PCR明显好于SCR,训练样本并没有增多,现在感觉OverFeat这种每类训练样本少的解释合理性有待商榷;此外网络结构不同感觉是两个结果区别的关键,除卷积提取阶段不同外;全连接层的结构也不同OverFeat网络是4096-1024-regression;本文的网络是4096-4096-regression;从对比来看造成这种差距的原因估计是网络结果上的问题;但是这个可以解释为什么本文的结果比OverFeat的结果好,如果用网络结构来解释PCR比SCR好,感觉有些牵强。所以感觉PCR和SCR两种预测bounding box方法的影响因素,还是有些不明白。“还有一个不同的地方就是在上面的测试中,本文给出了图片真正的分类,然后更具真是的类比,预测bounding box;而不是采用先预测分类,在预测bounding box的方法” 。

二、模型分析

可知,VGG是在AlexNet上所改进的,两者的比较如下:

相同点

1.最后三层FC层(Fully Connected全连接层)结构相同。
2.都分成五层(组)。
3.每层和每层之间用pooling层分开。

不同点

1.AlexNet每层仅仅含有一个Convolution层,filter的大小7x7(很大);而VGG每层含有多个(2~4)个Convolution层,filter的大小是3x3(最小)。很明显,VGG是在模仿Alex的结构,然而它通过降低filter的大小,增加层数来达到同样的效果。我提出我的一个对这种模仿的一种我自己的理解。因为不是论文中讲到,仅仅是我自己的理解,仅供大家参考。

作者在论文中说了一句
"This can be seen as imposing a regularisation on the 7 × 7 conv. filters, forcing them to have a decomposition through the 3 × 3 filters"
他说7x7 filter可以被分解成若干个3x3的filter的叠加。

类比一下n维空间的向量x,x的正交分解
x = x1(1, 0, 0, ....) + x2(0, 1, 0, ...) + x3(0, 0, 1,...) + ... + xn(0, 0, 0, ..., 1)

每一组的每一层的filter被类比成n维欧几里得空间的基底。
若VGG的一组含有3层3x3的filter,则我们则假设一个7x7的filter可以被分解成3种“正交”的3x3的filter。

作者原文:First, we incorporate three non-linearrectification layers instead of a single one, which makes the decision function more discriminative.Second, we decrease the number of parameters: assuming that both the input and the output of athree-layer 3 × 3 convolution stack has C channels, the stack is parametrised by 3 32C^2 = 27C^2weights; at the same time, a single 7 × 7 conv. layer would require 72C^2 = 49C^2

2.AlexNet的Channel明显小于VGG。猜测VGG的之所以能够达到更高的精准性,源自于更多的Channel数。而由于filter size的减小,channel可以大幅度增加,更多的信息可以被提取。

VGG真的创新点太少,他只是通过实验告诉我们网络深度对性能有举足轻重的影响,然后就是卷积核大小的理解。

相关参考:

http://blog.csdn.net/whiteinblue/article/details/43560491

http://hacker.duanshishi.com/?p=1690

http://www.jianshu.com/p/9c6d90e4f20e

第五弹:VGG的更多相关文章

  1. 前端学习 第五弹: CSS (一)

    前端学习 第五弹: CSS (一) 创建css: <link rel="stylesheet" type="text/css" href="my ...

  2. 分治算法(二分查找)、STL函数库的应用第五弹——二分函数

    分治算法:二分查找!昨天刚说不写算法了,但是突然想起来没写过分治算法的博客,所以强迫症的我…… STL函数库第五弹——二分函数lower_bound().upper_bound().binary_se ...

  3. 关于『进击的Markdown』:第五弹

    关于『进击的Markdown』:第五弹 建议缩放90%食用 路漫漫其修远兮,吾将上下而求索.  我们要接受Mermaid的考验了呢  Markdown 语法真香(一如既往地安利) ( 进击吧!Mark ...

  4. 转载:第五弹!全球首个微信小程序(应用号)开发教程!通宵吐血赶稿,每日更新!

    博卡君今天继续更新,忙了一天,终于有时间开工写教程.不罗嗦了,今天我们来看看如何实现一些前端的功能和效果. 第八章:微信小程序分组开发与左滑功能实现 先来看看今天的整体思路: 进入分组管理页面--&g ...

  5. python 第五弹

    *:first-child { margin-top: 0 !important; } .markdown-body>*:last-child { margin-bottom: 0 !impor ...

  6. Spring Boot第五弹,WEB开发初了解~

    持续原创输出,点击上方蓝字关注我吧 目录 前言 Spring Boot 版本 前提条件(必须注意) 添加依赖 第一个接口开发 如何自定义tomcat的端口? 如何自定义项目路径? JSON格式化 日期 ...

  7. ActiveMQ第五弹:增加ReDelivery功能

    在使用Message Queue的过程中,总会由于种种原因而导致消息失败.一个经典的场景是一个生成者向Queue中发消息,里面包含了一组邮件地址和邮件内容.而消费者从Queue中将消息一条条读出来,向 ...

  8. Python3 学习第五弹:类与面向对象

    对于面向对象总是要提到,万物皆对象.好似博大精深的感觉. 接下来一起看看python的面向对象的例子 创建一个对象 class Person: type = 'person' def __init__ ...

  9. My集合框架第五弹 最小堆

    二叉堆(以最小堆为例),其具有结构性质和堆序性质结构性质: 堆是一棵完全的二叉树,一颗高为h的完全二叉树有2^h到2^h-1个节点,高度为log N            而且该结构可以很容易的使用数 ...

随机推荐

  1. docker容器和镜像区别

    这篇文章希望能够帮助读者深入理解Docker的命令,还有容器(container)和镜像(image)之间的区别,并深入探讨容器和运行中的容器之间的区别. 当我对Docker技术还是一知半解的时候,我 ...

  2. JS-将input输入框写入的小写字母全部转换成为大写字母的JS代码

    <input name="htmer" type="text" onkeyup="this.value=this.value.toUpperCa ...

  3. JS IIFE写法

    IIFE 博客分类: 前端开发   介绍IIFE IIFE的性能 使用IIFE的好处 IIFE最佳实践 jQuery优化 在Bootstrap源码(具体请看<Bootstrap源码解析>) ...

  4. linux的学习系列 4---文件权限和访问模式

    为了更加安全的存储文件,Linux为不同的文件赋予了不同的权限,每个文件都拥有下面三种权限: 所有者权限:文件所有者能够进行的操作 组权限:文件所属用户组能够进行的操作 外部权限(其他权限):其他用户 ...

  5. nagios总结

    主要功能 网络服务监控(SMTP.POP3.HTTP.NNTP.ICMP.SNMP.FTP.SSH) 主机资源监控(CPU load.disk usage.system logs),也包括Window ...

  6. github入门操作

    一.更新github上的已有项目: 将repository clone到本地 shanyu@debian:~/Git$ git clone https://github.com/xunbu7/Hell ...

  7. AI 人工智能 探索 (二)

    完整被动技能代码 using UnityEngine; using System.Collections; public class AI : MonoBehaviour { private Hash ...

  8. elasticsearch高级配置之(二)----线程池设置

    elasticsearch 配置 线程池  一个Elasticsearch节点会有多个线程池,但重要的是下面四个:  索引(index):主要是索引数据和删除数据操作(默认是cached类型)  搜索 ...

  9. 基于IDL 的WebRS系统设计图

    图1 用例图 图2 结构图

  10. MFC的核心概念

    API是英文Application Programming Interface 的缩写,意思是“应用程序接口”,泛指系统为应用程序提供的一系列函数接口,在编程时可以直接调用,而不必知道其内部实现的过程 ...