Source: http://ho.ax/posts/2012/02/debugging-the-mac-os-x-kernel-with-vmware-and-gdb/

Source: http://ho.ax/posts/2012/02/vmware-hardware-debugging/

Edit 13 July 2013: I’ve made a couple of updates to this post to clarify a couple of things and resolve issues people have had.

fG! did a great write up here on how to set up two-machine debugging with VMware on Leopard a couple of years ago, but as a few things have changed since then and I will probably refer to this topic in future posts I thought it was worth revisiting.

Debugging kernel extensions can be a bit of a pain. printf()-debugging is the worst, and being in kernel-land, it might not be immediately obvious how to go about debugging your (or other people’s) code. Apple has long provided methods for kernel debugging via the Kernel Debugger Protocol (KDP), along with ddb, the in-kernel serial debugger. KDP is implemented in-kernel by an instance ofIOKernelDebugger, and allows you to connect to the debug stub from an instance of gdb (Apple’s outdated fork only AFAIK) running on another machine connected via FireWire or Ethernet. ddb can be used to debug the running kernel from the target machine itself, but is pretty low-level and arcane. Apple suggests in the Kernel Programming Guide that you are better off using gdb for most tasks, so that’s what we’ll do.

Enter VMware

We don’t really want to use two physical machines for debugging, because who the hell uses physical boxes these days when VMs will do the job? With the release of Mac OS X 10.7 (Lion), Apple changed the EULA to allow running virtualised instances of Lion on top of an instance running on bare metal. Prior to this, only the “server” version of Mac OS X was allowed to be virtualised, and VMware ‘prevented’ the client version from being installed through some hardcoded logic in vmware-vmx(which some sneaky hackers patched). VMware Fusion 4 introduced the ability to install Mac OS X 10.7 into a VM without any dodgy hacks, just by choosing the Install Mac OS X Lion.app bundle as the installation disc.

So, the first step of the process is: install yourself a Mac OS X VM as per the VMware documentation.

Edit 13 July 2013: Once you’re done it’s probably a good idea to take a snapshot of your VM in case there are problems installing the debug kernel. Generally it’s not a problem, but it’s annoying to roll back and much easier to use a VMware snapshot.

Install the debug kernel

Once we’ve got our VM installed, we need to install the Kernel Debug Kit. This contains a version of the XNU kernel built with the DEBUG flag set, which includes the debug stubs for KDP and ddb, and a second DEBUG version with a full symbol table to load in GDB so we can use breakpoints on symbol names and not go insane. The debug kits used to live here, but it seems Apple decided they only want ADC members to be able to access them, so now they’re here (requires ADC login). Download the appropriate version for the target kernel you’re debugging in the VM (not necessarily the same as the kernel version on your host debugger machine). In this case I’m using Kernel Debug Kit 10.7.3 build 11D50. Copy this image up to the target VM, and install the debug kernel as per the instructions in the readme file:

macvm$ sudo -s
macvm# cd /
macvm# ditto /Volumes/KernelDebugKit/DEBUG_Kernel/System.kext /System/Library/Extensions/System.kext
macvm# cp -r /Volumes/KernelDebugKit/DEBUG_Kernel/mach_kernel* /
macvm# chown -R root:wheel /System/Library/Extensions/System.kext /mach_kernel*
macvm# chmod -R g-w /System/Library/Extensions/System.kext /mach_kernel*
macvm# touch /System/Library/Extensions
macvm# shutdown -r now

Hopefully your VM has successfully booted with the debug kernel and no magic blue smoke has been let out.

Edit 13 July 2013: If your VM has panicked at boot time make sure you’ve allocated at least 4GB of RAM to the VM or it will not boot on newer OS X versions.

Next we need to set the kernel boot arguments to tell it to wait for a debugger connection at boot time. There are other options but, as fG! said previously, there isn’t an obvious way to generate an NMI within VMware (I haven’t really looked further into this - if there is I’d like to hear about it). In VMware Fusion 4, the proper NVRAM support means we can specify normal boot-args in NVRAM rather than the old com.apple.Boot.plist, by using the nvram utility on the target VM like this:

macvm# nvram boot-args="-v debug=0x1"

Now we’ll do a bit of config on the debug host, then reboot the VM.

Debug host config

Traditionally, two-machine debugging would either use FireWire or Ethernet. We can simulate Ethernet with the VMware network bridging.

Edit 13 July 2013: With newer versions of OS X (I’m not sure exactly when they introduced this but it definitely works on 10.8.4) you don’t actually need to do this static ARP trick any more. When the VM boots it will stop at “Waiting for remote debugger connection” after telling you its MAC and IP address. You should be able to skip the static ARP and just kdp-reattach (as below) directly to the IP address displayed here.

Grab the MAC address and IP address of your VM:

macvm$ ifconfig en0
en0: flags=8863<UP,BROADCAST,SMART,RUNNING,SIMPLEX,MULTICAST> mtu 1500
options=2b<RXCSUM,TXCSUM,VLAN_HWTAGGING,TSO4>
ether 00:0c:29:d6:df:02
inet6 fe80::20c:29ff:fed6:df02%en0 prefixlen 64 scopeid 0x4
inet 10.0.0.15 netmask 0xffffff00 broadcast 10.0.0.255
media: autoselect (1000baseT <full-duplex>)
status: active

And back on your debug host, add a static ARP entry for the VM:

debughost# arp -s 10.0.0.15 0:c:29:d6:df:2
debughost# arp 10.0.0.15
macvm (10.0.0.15) at 0:c:29:d6:df:2 on en0 permanent [ethernet]

I also have an /etc/hosts entry for the VM, hence the hostname macvm.

Now we should be able to reboot the VM and it will pause waiting for the debugger connection at the start of the boot process. It used to actually say Waiting for debugger connection… or something similar in previous kernel versions, but it seems to pause after [PCI configuration begin] on 10.7.

Fire up GDB

Now it’s time to actually start GDB and connect to the KDP debug stub. Assuming you’ve just mounted the Kernel Debug Kit dmg file, the following paths should be correct. On the debug host machine:

$ gdb /Volumes/KernelDebugKit/DEBUG_Kernel/mach_kernel
GNU gdb 6.3.50-20050815 (Apple version gdb-1708) (Thu Nov 3 21:59:02 UTC 2011)
Copyright 2004 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "x86_64-apple-darwin"...

This is contrary to the instructions in the readme file for the Kernel Debug Kit, which tells you to target/Volumes/KernelDebugKit/mach_kernel with gdb. I haven’t been able to get this kernel to work correctly - symbols are not looked up properly and lots of addresses seem to be wrong, resulting in the kgmacros stuff not working, and breakpoints being set at the wrong addresses. If you load the kernel in the DEBUG_Kernel directory it works OK.

Next, source the kgmacros file - this contains a bunch of GDB macros that make dealing with kernel introspection and debugging much easier (particularly when you want to start looking at stuff like the virtual memory subsystem, and other fun stuff):

gdb$ source /Volumes/KernelDebugKit/kgmacros
Loading Kernel GDB Macros package. Type "help kgm" for more info.

Note: if you’re attaching to a kernel running on a different arch (ie. you created a 32-bit VM on a 64-bit machine), you’ll need to use the --arch flag:

The –arch=i386 option allows you to use a system running the 64-bit kernel to connect to a target running the 32-bit kernel. The –arch=x86_64 option allows you to go the other direction.

Now we attach to the debug target machine:

gdb$ kdp-reattach 10.0.0.15
Connected.

Edit 13 July 2013: If you’re using a recent OS X you can kdp-reattach to the IP address that was printed when the debug kernel paused waiting for the debugger.

You can also attach using target remote-kdp and attach 10.0.0.15. Allow the kernel to continue execution:

gdb$ c

At this point the disk icon in VMware should be going blue with activity, and the VM should continue booting as normal.

Breaking into the debugger

Unfortunately, we can’t use the normal method of hitting ^C in the debugger to pause execution, so we have to rely on software breakpoints. The method fG! initially suggested was to break ontcp_connect() or something similar, so you can drop into the debugger by attempting to telnetsomewhere. This proves to be a bit cumbersome in Lion with all the fancy (scary) network autodetect stuff - connections going out from agents all over the place means constantly dropping into the debugger.

The method that I have primarily used is to set a breakpoint on the kext_alloc() function. This is called once during the initialisation of a kernel extension, so it can be a reasonably useful point at which to break if you want to debug the initialisation of the kext, and a good on-demand breakpoint for general kernel memory inspection.

Edit 13 July 2013: @chicagoben pointed me at a simple method of replicating the behaviour of an NMI and dropping into the debugger using the technique in this handy kernel module.

Breaking on kext_alloc():

Breakpoint 1, kext_alloc (_addr=0xffffff804650b5f0, size=0x3000, fixed=0x0) at kext_alloc.c:107
107 in kext_alloc.c

And getting a stack trace:

gdb$ bt
#0 kext_alloc (_addr=0xffffff804650b5f0, size=0x3000, fixed=0x0) at kext_alloc.c:107
#1 0xffffff80008f4166 in kern_allocate (size=0x3000, flags=0xffffff804650b664, user_data=0xffffff80096f9880) at OSKext.cpp:408
#2 0xffffff8000922874 in allocate_kext (context=0xffffff800af06420, callback_data=0xffffff80096f9880, vmaddr_out=0xffffff804650b710, vmsize_out=0xffffff804650b708, linked_object_alloc_out=0xffffff804650b6f8) at kxld.c:468
#3 0xffffff8000921e69 in kxld_link_file (context=0xffffff800af06420, file=0xffffff8036641000 "????\a", size=0x2600, name=0xffffff8007e14a90 "ax.ho.kext.DebugTest", callback_data=0xffffff80096f9880, dependencies=0xffffff80091e4a60, ndependencies=0x6, linked_object_out=0xffffff804650b8f8, kmod_info_kern=0xffffff80096f98c8) at kxld.c:273
#4 0xffffff80008f0b55 in OSKext::loadExecutable (this=0xffffff80096f9880) at OSKext.cpp:4751
#5 0xffffff80008f3cc4 in OSKext::load (this=0xffffff80096f9880, startOpt=0x0, startMatchingOpt=0x0, personalityNames=0x0) at OSKext.cpp:4420
#6 0xffffff80008f741b in OSKext::loadKextWithIdentifier (kextIdentifier=0xffffff8007e1adf0, allowDeferFlag=0x0, delayAutounloadFlag=0x0, startOpt=0x0, startMatchingOpt=0x0, personalityNames=0x0) at OSKext.cpp:4184
#7 0xffffff80008f8c91 in OSKext::loadFromMkext (clientLogFilter=0x0, mkextBuffer=0xffffff8046362400 "MKXTMOSX", mkextBufferLength=0x2da8, logInfoOut=0xffffff804650bc30, logInfoLengthOut=0xffffff804650bc2c) at OSKext.cpp:3271
#8 0xffffff8000909f32 in kext_request (hostPriv=0xffffff8000c8bec0, clientLogSpec=0x0, requestIn=0xffffff80075c9d30, requestLengthIn=0x2da8, responseOut=0xffffff800a976918, responseLengthOut=0xffffff800a976940, logDataOut=0xffffff800a976928, logDataLengthOut=0xffffff800a976944, op_result=0xffffff800a976948) at OSKextLib.cpp:281
#9 0xffffff800028d9ab in _Xkext_request (InHeadP=0xffffff800abbec38, OutHeadP=0xffffff800a9768f4) at host_priv_server.c:5961
#10 0xffffff80002443d2 in ipc_kobject_server (request=0xffffff800abbebc0) at ipc_kobject.c:339
#11 0xffffff8000221570 in ipc_kmsg_send (kmsg=0xffffff800abbebc0, option=0x0, send_timeout=0x0) at ipc_kmsg.c:1376
#12 0xffffff8000237393 in mach_msg_overwrite_trap (args=0xffffff80067c65a4) at mach_msg.c:487
#13 0xffffff80002375b4 in mach_msg_trap (args=0xffffff80067c65a4) at mach_msg.c:554
#14 0xffffff8000354a01 in mach_call_munger64 (state=0xffffff80067c65a0) at bsd_i386.c:534

If you’re debugging a kernel extension that you are writing yourself (or have the code for) a better method of dropping into the debugger is to put an int 3 (software breakpoint) in your code at the point you want to break, like this:

kern_return_t DebugTest_start(kmod_info_t * ki, void *d)
{
printf("hurr\n");
asm("int $3");
derp();
return KERN_SUCCESS;
}

Now when we load this kext we get dropped into the debugger:

Program received signal SIGTRAP, Trace/breakpoint trap.
0xffffff7f80b2af12 in ?? ()

The call stack at this point looks somewhat similar to before, passing through the OSKext class:

gdb$ bt
#0 0xffffff7f80b27f12 in ?? ()
#1 0xffffff80008eebb4 in OSKext::start (this=0xffffff8007d37400, startDependenciesFlag=0x1) at OSKext.cpp:5456
#2 0xffffff80008f3e97 in OSKext::load (this=0xffffff8007d37400, startOpt=0x0, startMatchingOpt=0x0, personalityNames=0x0) at OSKext.cpp:4475
#3 0xffffff80008f741b in OSKext::loadKextWithIdentifier (kextIdentifier=0xffffff80068955b0, allowDeferFlag=0x0, delayAutounloadFlag=0x0, startOpt=0x0, startMatchingOpt=0x0, personalityNames=0x0) at OSKext.cpp:4184
#4 0xffffff80008f8c91 in OSKext::loadFromMkext (clientLogFilter=0x0, mkextBuffer=0xffffff804623e400 "MKXTMOSX", mkextBufferLength=0x2da8, logInfoOut=0xffffff8045c23c30, logInfoLengthOut=0xffffff8045c23c2c) at OSKext.cpp:3271
<snip>

And we can disassemble the code at and after the breakpoint:

gdb$ x/11i 0xffffff7f80b2df12 - 1
0xffffff7f80b2df11: int3
0xffffff7f80b2df12: xor cl,cl
0xffffff7f80b2df14: mov al,cl
0xffffff7f80b2df16: call 0xffffff7f80b2df70
0xffffff7f80b2df1b: mov DWORD PTR [rbp-0x18],0x0
0xffffff7f80b2df22: mov eax,DWORD PTR [rbp-0x18]
0xffffff7f80b2df25: mov DWORD PTR [rbp-0x14],eax
0xffffff7f80b2df28: mov eax,DWORD PTR [rbp-0x14]
0xffffff7f80b2df2b: add rsp,0x20
0xffffff7f80b2df2f: pop rbp
0xffffff7f80b2df30: ret

This corresponds to the following code from the binary (extracted using otool -tv):

0000000000000f11	int	$0x3
0000000000000f12 xorb %cl,%cl
0000000000000f14 movb %cl,%al
0000000000000f16 callq 0x00000f70
0000000000000f1b movl $0x00000000,0xe8(%rbp)
0000000000000f22 movl 0xe8(%rbp),%eax
0000000000000f25 movl %eax,0xec(%rbp)
0000000000000f28 movl 0xec(%rbp),%eax
0000000000000f2b addq $0x20,%rsp
0000000000000f2f popq %rbp
0000000000000f30 ret

Poking around in kernel memory

Let’s check out a few neat things in memory. The start of the Mach-O header for the kernel image in memory:

gdb$ x/x 0xffffff8000200000
0xffffff8000200000: 0xfeedfacf

This is the “magic number” indicating a 64-bit Mach-O executable. The 32-bit version is 0xfeedface.

The “system verification code”:

gdb$ x/s 0xffffff8000002000
0xffffff8000002000: "Catfish "

On previous PowerPC versions of the OS this was located at 0x5000 and said "Hagfish ". Here is the corresponding assembly source from osfmk/x86_64/lowmem_vectors.s in the kernel source tree:

/*
* on x86_64 the low mem vectors live here and get mapped to 0xffffff8000200000 at
* system startup time
*/ .text
.align 12
.globl EXT(lowGlo)
EXT(lowGlo): .ascii "Catfish " /* +0x000 System verification code */

Interestingly, that comment appears to be incorrect - 0xffffff8000200000 is where the kernel image itself starts and the stuff in lowmem_vectors.s starts at 0xffffff8000002000 as we’ve seen.

If you’re interested in kernel internals (which you probably are if you’re reading this) then you might want to have a look at the kgmacros help at this point:

gdb$ help kgm
| These are the kernel gdb macros. These gdb macros are intended to be
| used when debugging a remote kernel via the kdp protocol. Typically, you
| would connect to your remote target like so:
| (gdb) target remote-kdp
| (gdb) attach <name-of-remote-host>
<snip>

There’s heaps of cool and useful stuff there to look at.

Listing the process tree by walking the list from allproc down:

gdb$ showproctree
PID PROCESS POINTER]
=== ======= =======
0 kernel_task [ 0xffffff80073e8820 ]
|--1 launchd [ 0xffffff80073e8820 ]
| |--163 xpchelper [ 0xffffff800912a9f0 ]
| |--158 launchd [ 0xffffff8007c65e40 ]
| | |--162 distnoted [ 0xffffff80081f8010 ]
| | |--161 mdworker [ 0xffffff80073e83d0 ]
| |--157 mdworker [ 0xffffff80082c6010 ]
| |--139 com.apple.dock.e [ 0xffffff800912ae40 ]
| |--138 filecoordination [ 0xffffff800912b290 ]
| |--111 xpchelper [ 0xffffff8007c66f80 ]
| |--106 launchdadd [ 0xffffff80081fa290 ]
| |--104 launchd [ 0xffffff80082c86e0 ]
<snip>

Print the struct proc (kernel version, not the userland one) for the kernel task:

gdb$ print *(struct proc *)0xffffff80073e8820
$4 = {
p_list = {
le_next = 0xffffff8000cb4c20,
le_prev = 0xffffff80073e76e0
},
p_pid = 0x1,
task = 0xffffff80067c25a0,
p_pptr = 0xffffff8000cb4c20,
p_ppid = 0x0,
p_pgrpid = 0x1,
p_uid = 0x0,
p_gid = 0x0,
<snip>

Have a poke around and see what you can find.

Source-level debugging

Now that we’ve explored kernel memory a bit, it’s probably worth noting that you can use the kernel source for source-level debugging within GDB, or possibly even in Xcode (anybody done this?). Some of the documentation seems to be a bit out of date on this - e.g. the Kernel Programming Guide references a .gdbinit file defined in the osfmk directory (the Mach part of the kernel) which no longer exists, and previous documentation mentions creation of a /SourceCache/xnu/... directory for source-level debugging, but this trick doesn’t seem to work any more. It seems that these days the kernel debug symbol information relates only to filename and line number, not full file path, like this:

Breakpoint 1, kext_alloc (_addr=0xffffff80463735f0, size=0x3000, fixed=0x0) at kext_alloc.c:107
107 kext_alloc.c: No such file or directory.

We can still load source code on a per-directory basis if we know where the file in question is located. In this instance it’s osfmk/kern/kext_alloc.c within the kernel source tree, we’ll do this:

gdb$ dir /path/to/xnu-1699.24.23/osfmk/kern/

And magic:

gdb$ l
102 }
103
104 kern_return_t
105 kext_alloc(vm_offset_t *_addr, vm_size_t size, boolean_t fixed)
106 {
107 kern_return_t rval = 0;
108 mach_vm_offset_t addr = (fixed) ? *_addr : kext_alloc_base;
109 int flags = (fixed) ? VM_FLAGS_FIXED : VM_FLAGS_ANYWHERE;
110
111 /* Allocate the kext virtual memory */

Go grab yourself a copy of the source for your kernel version at opensource.apple.com and give it a try.

So, yeah…

Have fun.

A few days ago I wrote an article about debugging the OS X kernel with VMware and GDB, using Apple’s Kernel Debugger Protocol (KDP). There is another method of debugging XNU that is worth mentioning - VMware Fusion’s built in debug server. This is the virtual equivalent of a hardware debugger on a physical machine. According to a VMware engineer:

… when you stop execution, all cores are halted, the guest doesn’t even know that time has stopped, and you can happily single-step interrupt handlers, exceptions, etc.

This is pretty awesome, and has a few advantages over KDP:

  • It’s easier to break into the debugger - you can use the normal ^C method from the GDB session, rather than having to either insert int 3’s into your code or insert breakpoints on predictable function calls like kext_alloc() when you attach the debugger at boot time.
  • It’s faster - KDP works over UDP and seems to have a few timing issues where it drops packets or the target kernel doesn’t respond in time (particularly in the more complexkgmacros commands), whereas the VMware debug stub seems to be substantially faster and (so far) more reliable.
  • You can debug anything from the time the VM is powered on - this means that you can debug non-DEBUG XNU kernels, along with EFI stuff, the bootloader (boot.efi), whatever you want.

VMware setup

Getting this going is pretty easy, it just requires a couple of config options to be added to the .vmx file for your virtual machine. For example, if you have a VM called Lion.vmwarevm there’ll be a file inside called Lion.vmx which contains the configuration for the VM. Add the following lines (while the VM is not running):

debugStub.listen.guest32 = "TRUE"
debugStub.listen.guest64 = "TRUE"

The debug stub listens on the loopback interface on the Mac OS X host OS on which Fusion is running. If you want to debug from another machine (or VM) you need to enable the ‘remote’ listener in the .vmx file instead of (or as well as) the local listener:

debugStub.listen.guest32.remote = "TRUE"
debugStub.listen.guest64.remote = "TRUE"

Using this method you can connect to the debug stub from an instance of the FSF version of GDB on a Linux box.

That’s it, start up the VM. If you’re using a VM with a DEBUG kernel and you’ve set the boot-argsvariable in NVRAM to contain debug=0x1, as per the previous article, you will need to attach another instance of GDB via KDP at this point and continue in that instance to let the boot process finish.

GDB

I’ve found that if you try to connect to the debug stub without loading a file to debug you get errors like this:

[New thread 1]
Remote register badly formatted: T05thread:00000001;06:10d3fc7f00000000;07:c0d2fc7f00000000;10:8a18a07d00000000;
here: 0000000;07:c0d2fc7f00000000;10:8a18a07d00000000;

So start up GDB with whatever you’re intending to debug. In this example, the DEBUG kernel that is installed on the VM:

$ gdb /Volumes/KernelDebugKit/DEBUG_Kernel/mach_kernel

If you’re debugging a 32-bit VM on a 64-bit machine, you’ll need to set the architecture:

gdb$ set architecture i386

Or, if you are debugging 64-bit on 64-bit and have trouble connecting to the debug stub, you may need to explicitly set it to 64-bit:

gdb$ set architecture i386:x86-64

If you’re debugging a 64-bit VM, connect to the 64-bit debug stub:

gdb$ target remote localhost:8864

Or the 32-bit debug stub for a 32-bit VM:

gdb$ target remote localhost:8832

At this point you should be connected to the debug stub, and the VM should be paused. You’ll see a dark translucent version of the ‘play’ button used to start the VM on the VM console (indicating the VM is paused and the debugger has control), and something like this in GDB:

[New thread 1]
warning: Error 268435459 getting port names from mach_port_names
[Switching to process 1 thread 0x0]
0xffffff80008bf4c2 in tweak_crypt_group ()
gdb$

tweak_crypt_group() - heh. My VM is encrypting its disk at the moment.

Now you’re in familiar territory:

gdb$ source /Volumes/KernelDebugKit/kgmacros
Loading Kernel GDB Macros package. Type "help kgm" for more info.
gdb$ bt
#0 0xffffff7f817315b4 in ?? ()
#1 0xffffff7f8172343e in ?? ()
#2 0xffffff7f81724f68 in ?? ()
#3 0xffffff8000379b18 in machine_idle () at pmCPU.c:107
#4 0xffffff800025c357 in processor_idle (thread=0xffffff8008712b80, processor=0xffffff8000c9be20) at sched_prim.c:3928
#5 0xffffff8000257060 in thread_select_idle (thread=0xffffff8008712b80, processor=0xffffff8000c9be20) at sched_prim.c:1793
#6 0xffffff8000256d8e in thread_select (thread=0xffffff8008712b80, processor=0xffffff8000c9be20) at sched_prim.c:1728
#7 0xffffff8000258bbf in thread_block_reason (continuation=0xffffff8000227270 <ipc_mqueue_receive_continue>, parameter=0x0, reason=0x0) at sched_prim.c:2396
#8 0xffffff8000258cbc in thread_block (continuation=0xffffff8000227270 <ipc_mqueue_receive_continue>) at sched_prim.c:2415
#9 0xffffff8000227357 in ipc_mqueue_receive (mqueue=0xffffff8008854728, option=0x7000006, max_size=0xc00, rcv_timeout=0xffffffff, interruptible=0x2) at ipc_mqueue.c:698
#10 0xffffff8000237542 in mach_msg_overwrite_trap (args=0xffffff800872b804) at mach_msg.c:528
#11 0xffffff80002375b4 in mach_msg_trap (args=0xffffff800872b804) at mach_msg.c:554
#12 0xffffff8000354a01 in mach_call_munger64 (state=0xffffff800872b800) at bsd_i386.c:534
gdb$ showalltasks
task vm_map ipc_space #acts pid process io_policy wq_state command
0xffffff80067ac938 0xffffff800249ee98 0xffffff80066ebdb0 60 0 0xffffff8000cb4c20 kernel_task
0xffffff80067ac5a0 0xffffff800249e200 0xffffff80066ebd10 3 1 0xffffff8007576820 launchd
0xffffff80067ac208 0xffffff800249e010 0xffffff80066ebc70 1 2 0xffffff80075763d0 launchctl
0xffffff80067ab740 0xffffff800249e108 0xffffff80066eba90 3 10 0xffffff80075756e0 2 1 0 kextd
0xffffff80067abe70 0xffffff8007003568 0xffffff80066ebbd0 3 11 0xffffff8007575f80 1 0 0 UserEventAgent
0xffffff80067abad8 0xffffff8007e692f8 0xffffff80066ebb30 3 12 0xffffff8007575b30 1 0 0 mDNSResponder
<snip>

Don’t forget you can just ^C to drop back into the debuggger just like back in the good old userland days:

gdb$ c
^C
Program received signal SIGINT, Interrupt.
0xffffff7f817315b4 in ?? ()
gdb$ bt
#0 0xffffff7f817315b4 in ?? ()
#1 0xffffff7f8172343e in ?? ()
#2 0xffffff7f81724f68 in ?? ()
#3 0xffffff8000379b18 in machine_idle () at pmCPU.c:107
#4 0xffffff800025c357 in processor_idle (thread=0xffffff8008712b80, processor=0xffffff8000c9be20) at sched_prim.c:3928
<snip>

Enjoy.

[转]Debugging the Mac OS X kernel with VMware and GDB的更多相关文章

  1. Mac OS X Kernel Basic User Credentials

    User Credentials In order to understand security in OS X, it is important to understand that there a ...

  2. Vmware 10安装MAC OS X 10.9备忘

    下载准备     Vmware 10     unlock-all-v120.zip (用以支持新建MAC)     MAC OS X 10.9 VMWARE.rar 已经安装完成的MAC系统虚拟机镜 ...

  3. VMware 11完全安装Mac OS X 10.10

    本文已迁移到我的个人网站 http://www.wshunli.com 文章地址: http://www.wshunli.com/2016/03/17/VMware-12安装Mac-OS-X-10-1 ...

  4. VMware 安装 Mac OS 注意事项

    Ø  简介 本文主要介绍使用 VMware 安装 Mac OS 的注意事项,主要包括一下内容: 1.   安装参考 2.   使用 VMware 运行 Mac OS 虚拟机注意事项 3.   解决 M ...

  5. 从安装Mac OS X虚拟机到第一个IOS程序

    对于纯粹地抄这种行为是比较抵触的,别人已经写得挺好的东西没必要又去写一遍,但如果不写经验来看下次再做时自己又要重复百度筛选一遍,所以还是要记一记. 之前要获取IOS静态库的版本,但一直以来没有Mac没 ...

  6. 在VMware虚拟机中安装Mac OS 操作系统

    1. 安装VMware 我这里是安装VMWARE12.exe,其他的版本我不知道是否可以正常运行,最好大家安装12版本的比较好. 2. 安装 Mac OS X Unlocker for VMware ...

  7. VMware Workstation 11 安装MAC OS X 10.10 Yosemite(14B25)图解 2015-01-13 12:26:01|

    VMware Workstation 11 安装MAC OS X 10.10 Yosemite(14B25)图解 2015-01-13 12:26:01|  分类: 网络互联 |  标签:10.10  ...

  8. VMware 12安装Mac OS X 10.11&解决上网的问题

    近日想在Win10上安装Mac OS 玩玩,于是上网搜了相关资源,查看了相关经验分享,开始着手安装.系统很快成功安装,但最大问题是虚拟机中的Mac OS无法上网.费了很长时间,最终看到Ping通结果, ...

  9. 2019windows上安装Mac OS 10.14过程详细截图

    之前VMware12里面的Mac OS10.10升级后,键盘鼠标就用不了了.试了几次都这样,只能重装VMware14, 安装Mac OS 10.14系统.把步骤截下图,分享一下. 一.材料准备 1.虚 ...

随机推荐

  1. hdu 4915 Parenthese sequence--2014 Multi-University Training Contest 5

    主题链接:http://acm.hdu.edu.cn/showproblem.php?pid=4915 Parenthese sequence Time Limit: 2000/1000 MS (Ja ...

  2. Corel VideoStudio Pro X7(会声会影)

    今天了解一天的视频剪辑方面的知识,自己也动手做了一个. 好啦!下面给大家一些建议: 剪辑软件选择: 1.易学易用.容易上手.模板丰富:会声会影:(需要安装包的可以留言和私信我)2.功能齐全.占用资源少 ...

  3. NFC学习笔记2——Libnfc简介及安装

    我一直希望自己的文章做一些记录的英文翻译.趁着学习NFC,现在,libnfc主页libnfc介绍和不同的操作系统libnfc文章做一些翻译安装.一方面,提高自己的英语,一方面有了解libnfc. 原文 ...

  4. Oracle免费的便捷Web应用开发框架

    Oracle免费的便捷Web应用开发框架 APEX 总体来说,APEX是我见过最便捷最高效的开发框架,用起来比PHP还舒服.上手简单,学习成本极低,曾经有个做行政的小女生,在我指导下两天就可以开发出简 ...

  5. Eclipse部署Web项目(图文讲解)

    讲解是在linux下完成的,但对windows系统,操作也是一样的,不要被吓到了 1.下载Eclipse

  6. leetcode先刷_Merge Two Sorted Lists

    非常easy问题. 唯一的地方可以具有更具挑战是确保不会引入额外的空间.查找开始值最小的名单列表的新掌门人,头从列表中删除.其他操作应该没有问题. class Solution { public: L ...

  7. CentOS-6.5-x86_64 最小化安装,已安装包的总数,这些包?

    一.我们怎么知道有多少的包被安装? [root@localhost ~]# rpm -qa | wc -l 217 二.怎样得知安装了那些软件包? [root@localhost ~]# rpm -q ...

  8. Android实现“是否退出”对话框和“带图标的列表”对话框

    今天我们学习的内容是实现两种对话框(Dialog),第一种是询问是否退出对话框,另外一种是带图标的列表对话框,程序的执行效果是,我们点击button1的时候,弹出第一种对话框,我们点击button2的 ...

  9. C--控制语句循环例子

    C的三种循环while.for和do  while 先说一下scanf()函数的返回值问题 当scanf("%d,%d",&a,&b);如果用户正确输入了俩个整形变 ...

  10. Android 数据库加密

    一 一个简短的引论   SQLite是一个轻量的.跨平台的.开源的数据库引擎.它的读写效率.资源消耗总量.延迟时间和总体简单性上具有的优越性,使其成为移动平台数据库的最佳解决方式(如Android.i ...