聚合 和 分组聚合:

PlayMorphia 它提供了基于开发人员models的友好接口

设想你定义了一个model。class Sales:

@Entity public class Sales extends Model {
public String employeeId;
public String department;
public String region;
public int amount;
}

聚合:如今你能够在Sales模型上做聚合操作,以下是一些详细演示样例:

long total = Sales.count(); // also Sales.q().count();
long cntIT = Sales.q().filter("department", "IT").count();
long cntAU = Sales.q().filter("region", "AU").count();
long cntAuIt = Sales.find("region, department", "AU", "IT").count();

求和:

long sum = Sales._sum("amount"); // also Sales.q().sum("amount");
long sumIT = Sales.find("department", "IT").sum("amount");
long sumAU = Sales.find("region", "AU").sum("amount");
long sumAuIt = Sales.find("region department", "AU", "IT").sum("amount");

最大值:

long max = Sales._max("amount"); // also Sales.q().max("amount");
long maxIT = Sales.find("department", "IT").max("amount");
long maxAU = Sales.find("region", "AU").max("amount");
long maxAuIt = Sales.find("region department", "AU", "IT").max("amount");

最小值:

long min = Sales._min("amount"); // also Sales.q().min("amount");
long minIT = Sales.find("department", "IT").min("amount");
long minAU = Sales.find("region", "AU").min("amount");
long minAuIt = Sales.find("region department", "AU", "IT").min("amount");

分组聚合:

每个聚合都会相应一个分组聚合的接口,就像SQL中的group by语句

分组计数:

// group by region
AggregationResult byRegion = Sales.groupCount("region");
System.out.println("AU count: " + byRegion.get("region", "AU");
// group by department
AggregationResult byDep = Sales.groupCount("department");
System.out.println("IT count: " + byDep.get("department", "IT");
// group by region and department
AggregationResult byRegionDep = Sales.groupCount("region, department");
System.out.println("IT count: " + byRegionDep.get("department, region", "IT", "AU");

分组求和:

// group by region
AggregationResult byRegion = Sales.groupSum("region");
System.out.println("AU sum: " + byRegion.get("region", "AU");
// group by department
AggregationResult byDep = Sales.groupSum("department");
System.out.println("IT sum: " + byDep.get("department", "IT");
// group by region and department
AggregationResult byRegionDep = Sales.groupSum("region, department");
System.out.println("IT sum: " + byRegionDep.get("department, region", "IT", "AU");

分组求最大值:

// group by region
AggregationResult byRegion = Sales.groupMax("region");
System.out.println("AU max: " + byRegion.get("region", "AU");
// group by department
AggregationResult byDep = Sales.groupMax("department");
System.out.println("IT max: " + byDep.get("department", "IT");
// group by region and department
AggregationResult byRegionDep = Sales.groupMax("region, department");
System.out.println("IT max: " + byRegionDep.get("department, region", "IT", "AU");

分组求最小值:

// group by region
AggregationResult byRegion = Sales.groupMin("region");
System.out.println("AU min: " + byRegion.get("region", "AU");
// group by department
AggregationResult byDep = Sales.groupMin("department");
System.out.println("IT min: " + byDep.get("department", "IT");
// group by region and department
AggregationResult byRegionDep = Sales.groupMin("region, department");
System.out.println("IT min: " + byRegionDep.get("department, region", "IT", "AU");

原文链接:http://www.playframework.com/modules/morphia-1.2.9/statistics

Play Modules Morphia 1.2.9a 之 Aggregation and Group aggregation的更多相关文章

  1. UML中关联(Association)、聚合(Aggregation)和合成(Composition)之间的区别

    本文为 Dennis Gao 原创技术文章,发表于博客园博客,未经作者本人允许禁止任何形式的转载. 现在,我们需要设计一个项目管理系统,目前我们收集到了如下这些需求: REQ1:一个项目内有多名项目成 ...

  2. 开发中使用mongoTemplate进行Aggregation聚合查询

    笔记:使用mongo聚合查询(一开始根本没接触过mongo,一点一点慢慢的查资料完成了工作需求) 需求:在订单表中,根据buyerNick分组,统计每个buyerNick的电话.地址.支付总金额以及总 ...

  3. 机器学习技法之Aggregation方法总结:Blending、Learning(Bagging、AdaBoost、Decision Tree)及其aggregation of aggregation

    本文主要基于台大林轩田老师的机器学习技法课程中关于使用融合(aggregation)方法获得更好性能的g的一个总结.包含从静态的融合方法blending(已经有了一堆的g,通过uniform:voti ...

  4. 网站行为跟踪 Website Activity Tracking Log Aggregation 日志聚合 In comparison to log-centric systems like Scribe or Flume

    网站行为跟踪 Website Activity Tracking 访客信息处理 Log Aggregation   日志聚合 Apache Kafka http://kafka.apache.org/ ...

  5. ansible common modules

    ##Some common modules[cloud modules] [clustering modules] [command modules]command - executes a comm ...

  6. 1.2 Use Cases中 Log Aggregation官网剖析(博主推荐)

    不多说,直接上干货! 一切来源于官网 http://kafka.apache.org/documentation/ Log Aggregation 日志聚合 Many people use Kafka ...

  7. 使用aggregation API扩展你的kubernetes API

    Overview What is Kubernetes aggregation Kubernetes apiserver aggregation AA 是Kubernetes提供的一种扩展API的方法 ...

  8. MySQL vs. MongoDB: Choosing a Data Management Solution

    原文地址:http://www.javacodegeeks.com/2015/07/mysql-vs-mongodb.html 1. Introduction It would be fair to ...

  9. Hadoop记录-hdfs转载

    Hadoop 存档 每个文件均按块存储,每个块的元数据存储在namenode的内存中,因此hadoop存储小文件会非常低效.因为大量的小文件会耗尽namenode中的大部分内存.但注意,存储小文件所需 ...

随机推荐

  1. Catch Up 朋友小聚 - 地道英语 - BBC Learning English BBC英语教学 - 爱思英语网

    Catch Up 朋友小聚 - 地道英语 - BBC Learning English BBC英语教学 - 爱思英语网 Catch Up 朋友小聚 分享到: 新浪微博 QQ空间 腾讯微博 微信 更多 ...

  2. hdu2036 (计算多边形的面积)

    Input 输入数据包含多个测试实例,每个测试实例占一行,每行的开始是一个整数n(3<=n<=100),它表示多边形的边数(当然也是顶点数),然后是按照逆时针顺序给出的n个顶点的坐标(x1 ...

  3. osx下快捷键相应符号

    2张图展示mac下相应的按键符号: 很多其它文章请前往小胖轩.

  4. HDU 2825 AC自动机+DP

    题意:一个密码,长度为 n,然后有m个magic words,这个密码至少由k个magic words组成. 问这个密码可能出现的总数. 思路:首先构造AC自动机,由于m很小,才10 ,我们可以使用二 ...

  5. 阅读zepto.js的core中的Core methods

    学习zepto.js,參考资料:http://www.zeptojs.cn/ 跟jQuery一样.其选择符号也是$; 首先接触的是 $.()  选择 $(selector, [context]) ⇒ ...

  6. PS顶级胶片滤镜插件 Alien Skin Exposure v6.x最新通用汉化补丁

    Alien Skin Exposure v6.0 是一款专业的PS胶片调色滤镜软件,使用Alien Skin Exposure可以迅速将照片调出各种胶片效果,如电影胶片.宝丽来胶片效果.波拉潘胶片效果 ...

  7. HDU1071 The area 【积分】

    The area Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total S ...

  8. 强大的PropertyGrid

    PropertyGrid, 做工具一定要用这东西..... 把要编辑的对象看成类的话, 全部要编辑的属性就是成员 嗯嗯, 近期看了几眼Ogitor, 它对于PropertyGrid的使用就非常不错 全 ...

  9. (step7.2.2)hdu 2161(Primes——判断是否是素数)

    题目大意:输入一个n,判断您是否是素数.. 解题思路:简单数论 代码如下: /* * 2161_1.cpp * * Created on: 2013年8月31日 * Author: Administr ...

  10. 采用大杀招QEMU调试Linux内核代码

    Linux调试内核代码是非常麻烦.它们一般加printk, 或者使用JTAG调试. 这里的方法是使用QEMU为了调试Linux核心. 由于QEMU自己实现gdb server, 它可以容易地使用gdb ...