Scrapy系列教程(2)------Item(结构化数据存储结构)
Items
爬取的主要目标就是从非结构性的数据源提取结构性数据,比如网页。 Scrapy提供 Item 类来满足这种需求。
Item 对象是种简单的容器。保存了爬取到得数据。
其提供了 类似于词典(dictionary-like) 的API以及用于声明可用字段的简单语法。
声明Item
Item使用简单的class定义语法以及 Field 对象来声明。
比如:
import scrapy class Product(scrapy.Item):
name = scrapy.Field()
price = scrapy.Field()
stock = scrapy.Field()
last_updated = scrapy.Field(serializer=str)
注解
熟悉 Django 的朋友一定会注意到Scrapy Item定义方式与 Django
Models 非常类似, 只是没有那么多不同的字段类型(Field type),更为简单。
Item字段(Item Fields)
Field 对象指明了每一个字段的元数据(metadata)。比如以下样例中 last_updated 中指明了该字段的序列化函数。
您能够为每一个字段指明不论什么类型的元数据。 Field 对象对接受的值没有不论什么限制。也正是由于这个原因,文档也无法提供全部可用的元数据的键(key)參考列表。
Field 对象中保存的每一个键能够由多个组件使用,而且仅仅有这些组件知道这个键的存在。您能够依据自己的需求,定义使用其它的Field 键。
设置 Field 对象的主要目的就是在一个地方定义好全部的元数据。
一般来说,那些依赖某个字段的组件肯定使用了特定的键(key)。您必须查看组件相关的文档,查看其用了哪些元数据键(metadata key)。
须要注意的是。用来声明item的 Field 对象并没有被赋值为class的属性。
只是您能够通过Item.fields 属性进行訪问。
以上就是全部您须要知道的怎样声明item的内容了。
与Item配合
接下来以 下边声明 的 Product item来演示一些item的操作。您会发现API和 dict
API 很相似。
创建item
>>> product = Product(name='Desktop PC', price=1000)
>>> print product
Product(name='Desktop PC', price=1000)
获取字段的值
>>> product['name']
Desktop PC
>>> product.get('name')
Desktop PC >>> product['price']
1000 >>> product['last_updated']
Traceback (most recent call last):
...
KeyError: 'last_updated' >>> product.get('last_updated', 'not set')
not set >>> product['lala'] # getting unknown field
Traceback (most recent call last):
...
KeyError: 'lala' >>> product.get('lala', 'unknown field')
'unknown field' >>> 'name' in product # is name field populated?
True >>> 'last_updated' in product # is last_updated populated?
False >>> 'last_updated' in product.fields # is last_updated a declared field?
True >>> 'lala' in product.fields # is lala a declared field? False
设置字段的值
>>> product['last_updated'] = 'today'
>>> product['last_updated']
today >>> product['lala'] = 'test' # setting unknown field
Traceback (most recent call last):
...
KeyError: 'Product does not support field: lala'
获取全部获取到的值
您能够使用 dict API 来获取全部的值:
>>> product.keys()
['price', 'name'] >>> product.items()
[('price', 1000), ('name', 'Desktop PC')]
其它任务
复制item:
>>> product2 = Product(product)
>>> print product2
Product(name='Desktop PC', price=1000) >>> product3 = product2.copy()
>>> print product3
Product(name='Desktop PC', price=1000)
依据item创建字典(dict):
>>> dict(product) # create a dict from all populated values
{'price': 1000, 'name': 'Desktop PC'}
依据字典(dict)创建item:
>>> Product({'name': 'Laptop PC', 'price': 1500})
Product(price=1500, name='Laptop PC') >>> Product({'name': 'Laptop PC', 'lala': 1500}) # warning: unknown field in dict
Traceback (most recent call last):
...
KeyError: 'Product does not support field: lala'
扩展Item
您能够通过继承原始的Item来扩展item(加入很多其它的字段或者改动某些字段的元数据)。
比如:
class DiscountedProduct(Product):
discount_percent = scrapy.Field(serializer=str)
discount_expiration_date = scrapy.Field()
您也能够通过使用原字段的元数据,加入新的值或改动原来的值来扩展字段的元数据:
class SpecificProduct(Product):
name = scrapy.Field(Product.fields['name'], serializer=my_serializer)
这段代码在保留全部原来的元数据值的情况下加入(或者覆盖)了 name 字段的 serializer 。
Item对象
Scrapy系列教程(2)------Item(结构化数据存储结构)的更多相关文章
- MySQL 5.7:非结构化数据存储的新选择
本文转载自:http://www.innomysql.net/article/23959.html (只作转载, 不代表本站和博主同意文中观点或证实文中信息) 工作10余年,没有一个版本能像MySQL ...
- Python爬虫(九)_非结构化数据与结构化数据
爬虫的一个重要步骤就是页面解析与数据提取.更多内容请参考:Python学习指南 页面解析与数据提取 实际上爬虫一共就四个主要步骤: 定(要知道你准备在哪个范围或者网站去搜索) 爬(将所有的网站的内容全 ...
- 0809MySQL实战系列:大字段如何优化|数据存储结构
转自https://yq.aliyun.com/articles/59256?spm=5176.100239.blogcont59257.9.5MLR2d 摘要: 背景 线上发现一张表,1亿的数据量, ...
- spark 解析非结构化数据存储至hive的scala代码
//提交代码包 // /usr/local/spark/bin$ spark-submit --class "getkv" /data/chun/sparktes.jar impo ...
- HBase介绍(2)---数据存储结构
在本文中的HBase术语:基于列:column-oriented行:row列组:column families列:column单元:cell 理解HBase(一个开源的Google的BigTable实 ...
- Solr系列四:Solr(solrj 、索引API 、 结构化数据导入)
一.SolrJ介绍 1. SolrJ是什么? Solr提供的用于JAVA应用中访问solr服务API的客户端jar.在我们的应用中引入solrj: <dependency> <gro ...
- Scrapy系列教程(3)------Spider(爬虫核心,定义链接关系和网页信息抽取)
Spiders Spider类定义了怎样爬取某个(或某些)站点.包含了爬取的动作(比如:是否跟进链接)以及怎样从网页的内容中提取结构化数据(爬取item). 换句话说.Spider就是您定义爬取的动作 ...
- WordPress插件--WP BaiDu Submit结构化数据插件又快又全的向百度提交网页
一.WP BaiDu Submit 简介 WP BaiDu Submit帮助具有百度站长平台链接提交权限的用户自动提交最新文章,以保证新链接可以及时被百度收录. 安装WP BaiDu Submit后, ...
- 利用Gson和SharePreference存储结构化数据
问题的导入 Android互联网产品通常会有很多的结构化数据需要保存,比如对于登录这个流程,通常会保存诸如username.profile_pic.access_token等等之类的数据,这些数据可以 ...
随机推荐
- Selenium 2.0 WebDriver 自动化测试 使用教程 实例教程 API快速参考
Selenium 2.0 WebDriver 自动化测试 使用教程 实例教程 API快速参考 //System.setProperty("webdriver.firefox.bin" ...
- ON、WHERE、HAVING的差别
ON .WHERE.HAVING都能通过限制条件筛选数据,但他们的使用及其不同.以下我们来分析三者之间的差别. 1. ON 和WHERE 全部的查询都回产生一个中间暂时报表,查询结果就是从 ...
- 在word 中复选框划勾或叉的方法
输入大写字母R.大写字母Q ,然后将字体改为Wingdings 2, 就分离得到带框的勾和叉.
- Win32 Windows编程 十
一 Windows画图 1 图形绘制 1.1 图形绘制的方式 获取到画图的句柄,设备描写叙述符(DC).使用对应的画图API.在设备上绘制图形 1.2 颜色 RGB,每种颜色8位,共24位颜色 32位 ...
- xcode project
An Xcode project is a repository for all the files, resources, and information required to build one ...
- Android 网络编程 Socket Http
前言 欢迎大家我分享和推荐好用的代码段~~ 声明 欢迎转载,但请保留文章原始出处: CSDN:http://www.csdn.net ...
- jQuery中的getJSON()
json文件是一种轻量级的数据交互格式.一般在jQuery中使用getJSON()方法读取. $.getJSON(url,[data],[callback]) url:json文件地址 data:可选 ...
- SVN的revert和update命令的区别
svn中的revert和update 今天有人问到revert和update的问题. 刚开始还真被问住了. 因为感觉revert和update都可以将本地的copy更新到以前的一个版本,会有什么不同呢 ...
- 算法学习 - 图的广度优先遍历(BFS) (C++)
广度优先遍历 广度优先遍历是非经常见和普遍的一种图的遍历方法了,除了BFS还有DFS也就是深度优先遍历方法.我在我下一篇博客里面会写. 遍历过程 相信每一个看这篇博客的人,都能看懂邻接链表存储图. 不 ...
- 一个简单而经典的RTX51 Tiny应用实例
关于RTX51 Tiny嵌入式实时操作系统的描写叙述请參考本人的上一篇博文(RTX51 Tiny实时操作系统学习笔记-初识RTX51 Tiny). 本篇博文.我将通过一个实例代码,带大家深入了解一下R ...