Boyer Moore算法(字符串匹配)
上一篇文章,我介绍了KMP算法。
但是,它并不是效率最高的算法,实际采用并不多。各种文本编辑器的"查找"功能(Ctrl+F),大多采用Boyer-Moore算法。
Boyer-Moore算法不仅效率高,而且构思巧妙,容易理解。1977年,德克萨斯大学的Robert S. Boyer教授和J Strother Moore教授发明了这种算法。
下面,我根据Moore教授自己的例子来解释这种算法。
1.
假定字符串为"HERE IS A SIMPLE EXAMPLE",搜索词为"EXAMPLE"。
2.
首先,"字符串"与"搜索词"头部对齐,从尾部开始比较。
这是一个很聪明的想法,因为如果尾部字符不匹配,那么只要一次比较,就可以知道前7个字符(整体上)肯定不是要找的结果。
我们看到,"S"与"E"不匹配。这时,"S"就被称为"坏字符"(bad character),即不匹配的字符。我们还发现,"S"不包含在搜索词"EXAMPLE"之中,这意味着可以把搜索词直接移到"S"的后一位。
3.
依然从尾部开始比较,发现"P"与"E"不匹配,所以"P"是"坏字符"。但是,"P"包含在搜索词"EXAMPLE"之中。所以,将搜索词后移两位,两个"P"对齐。
4.
我们由此总结出"坏字符规则":
后移位数 = 坏字符的位置 - 搜索词中的上一次出现位置
如果"坏字符"不包含在搜索词之中,则上一次出现位置为 -1。
以"P"为例,它作为"坏字符",出现在搜索词的第6位(从0开始编号),在搜索词中的上一次出现位置为4,所以后移 6 - 4 = 2位。再以前面第二步的"S"为例,它出现在第6位,上一次出现位置是 -1(即未出现),则整个搜索词后移 6 - (-1) = 7位。
5.
依然从尾部开始比较,"E"与"E"匹配。
6.
比较前面一位,"LE"与"LE"匹配。
7.
比较前面一位,"PLE"与"PLE"匹配。
8.
比较前面一位,"MPLE"与"MPLE"匹配。我们把这种情况称为"好后缀"(good suffix),即所有尾部匹配的字符串。注意,"MPLE"、"PLE"、"LE"、"E"都是好后缀。
9.
比较前一位,发现"I"与"A"不匹配。所以,"I"是"坏字符"。
10.
根据"坏字符规则",此时搜索词应该后移 2 - (-1)= 3 位。问题是,此时有没有更好的移法?
11.
我们知道,此时存在"好后缀"。所以,可以采用"好后缀规则":
后移位数 = 好后缀的位置 - 搜索词中的上一次出现位置
举例来说,如果字符串"ABCDAB"的后一个"AB"是"好后缀"。那么它的位置是5(从0开始计算,取最后的"B"的值),在"搜索词中的上一次出现位置"是1(第一个"B"的位置),所以后移 5 - 1 = 4位,前一个"AB"移到后一个"AB"的位置。
再举一个例子,如果字符串"ABCDEF"的"EF"是好后缀,则"EF"的位置是5 ,上一次出现的位置是 -1(即未出现),所以后移 5 - (-1) = 6位,即整个字符串移到"F"的后一位。
这个规则有三个注意点:
(1)"好后缀"的位置以最后一个字符为准。假定"ABCDEF"的"EF"是好后缀,则它的位置以"F"为准,即5(从0开始计算)。
(2)如果"好后缀"在搜索词中只出现一次,则它的上一次出现位置为 -1。比如,"EF"在"ABCDEF"之中只出现一次,则它的上一次出现位置为-1(即未出现)。
(3)如果"好后缀"有多个,则除了最长的那个"好后缀",其他"好后缀"的上一次出现位置必须在头部。比如,假定"BABCDAB"的"好后缀"是"DAB"、"AB"、"B",请问这时"好后缀"的上一次出现位置是什么?回答是,此时采用的好后缀是"B",它的上一次出现位置是头部,即第0位。这个规则也可以这样表达:如果最长的那个"好后缀"只出现一次,则可以把搜索词改写成如下形式进行位置计算"(DA)BABCDAB",即虚拟加入最前面的"DA"。
回到上文的这个例子。此时,所有的"好后缀"(MPLE、PLE、LE、E)之中,只有"E"在"EXAMPLE"还出现在头部,所以后移 6 - 0 = 6位。
12.
可以看到,"坏字符规则"只能移3位,"好后缀规则"可以移6位。所以,Boyer-Moore算法的基本思想是,每次后移这两个规则之中的较大值。
更巧妙的是,这两个规则的移动位数,只与搜索词有关,与原字符串无关。因此,可以预先计算生成《坏字符规则表》和《好后缀规则表》。使用时,只要查表比较一下就可以了。
13.
继续从尾部开始比较,"P"与"E"不匹配,因此"P"是"坏字符"。根据"坏字符规则",后移 6 - 4 = 2位。
14.
从尾部开始逐位比较,发现全部匹配,于是搜索结束。如果还要继续查找(即找出全部匹配),则根据"好后缀规则",后移 6 - 0 = 6位,即头部的"E"移到尾部的"E"的位置。
Boyer Moore算法(字符串匹配)的更多相关文章
- KMP算法 字符串匹配(看猫片)
前言 此篇笔记根据自己的理解和练习心得来解释算法,只代表个人观点,如有不足请指出(我刚学QWQ) 浅谈字符串匹配 设想一个场景,假设你是一个净化网络语言环境的管理员,每天需要翻阅大量的文章和帖子来查找 ...
- 算法——字符串匹配之BM算法
前言 Boyer-Moore算法是一种基于后缀匹配的模式串匹配算法(简称BM算法),后缀匹配就是模式串从右到左開始比較,但模式串的移动依旧是从左到右的.在实践中.BM算法效率高于前面介绍的<KM ...
- 算法——字符串匹配Rabin-Karp算法
前言 Rabin-Karp字符串匹配算法和前面介绍的<朴素字符串匹配算法>类似,也是相应每一个字符进行比較.不同的是Rabin-Karp採用了把字符进行预处理,也就是对每一个字符进行相应进 ...
- [数据结构与算法] 字符串匹配 - BF算法
BF(Brute Force)算法 又称暴力匹配算法,是一种朴素的模式匹配算法 给定主串 S : Bilibili 和子串 T :Bilididi 步骤: 1. 主串 S 第一位开始与子串 T 第一位 ...
- KMP算法——字符串匹配
正直找工作面试巅峰时期,有幸在学校可以听到July的讲座,在时长将近三个小时的演讲中,发现对于找工作来说,算法数据结构可以算是程序员道路的一个考量吧,毕竟中国学计算机的人太多了,只能使用这些方法来淘汰 ...
- KMP算法---字符串匹配
算法细节详见点击打开链接和点击打开链接 #include <stdio.h> #include <stdlib.h> #define N 7 #define M 15 void ...
- 字符串匹配(KMP 算法 含代码)
主要是针对字符串的匹配算法进行解说 有关字符串的基本知识 传统的串匹配法 模式匹配的一种改进算法KMP算法 网上一比較易懂的解说 小样例 1计算next 2计算nextval 代码 有关字符串的基本知 ...
- 字符串匹配常见算法(BF,RK,KMP,BM,Sunday)
今日了解了一下字符串匹配的各种方法. 并对sundaysearch算法实现并且单元. 字符串匹配算法,是在实际工程中经常遇到的问题,也是各大公司笔试面试的常考题目.此算法通常输入为原字符串(strin ...
- 字符串匹配的 Boyer-Moore 算法
上一篇文章,我介绍了 字符串匹配的KMP算法 但是,它并不是效率最高的算法,实际采用并不多.各种文本编辑器的” 查找” 功能(Ctrl+F),大多采用 Boyer-Moore 算法. 下面,我根据 M ...
随机推荐
- Openjudge-计算概论(A)-角谷猜想
描述: 所谓角谷猜想,是指对于任意一个正整数,如果是奇数,则乘3加1,如果是偶数,则除以2,得到的结果再按照上述规则重复处理,最终总能够得到1.如,假定初始整数为5,计算过程分别为16.8.4.2.1 ...
- Windows下PHP(Thread Safe与Non Thread Safe)版本说明
转载“http://www.taoz11.com/archives/300.html” linux下直接下载源码,在服务器上编译即可,发现windows下有4个版本: VC9 x86 Non Thre ...
- UPX3.03+UpolyX.5 Shell v1.0 汉化绿色版
软件名称:UPX3.03+UpolyX.5 Shell v1.0 汉化绿色版软件类别:汉化软件运行环境:Windows软件语言:简体中文授权方式:免费版软件大小:635 KB软件等级:整理时间:201 ...
- javascript焦点图之缓冲滚动无缝切换
在用于实现无缝切换四张图,所以设置了6个图片就是 4,0,1,2,3,4,0 <!DOCTYPE html> <html> <head> <meta char ...
- MyBatis 基本数据类型条件判断问题
1.判断参数使用:_parameter <select id="findCount" parameterType="int" resultType=&qu ...
- wordpress建站过程4——index.php
<?php get_header(); ?> <div id="primary" class="content-area col-md-9"& ...
- 关于Linode、Digitalocean、Vultr三款美国VPS服务商的用户体验
曾几何时,虽然我们在海外VPS服务商中也可以看到各种大大小小的商家,但是真正能让Linode这样高富帅有竞争力的还真不多,这不当初在Linode商家512MB内存方案卖20美元一个月的时候,还是有很多 ...
- 好玩的获取目录信息的例子[C#]
DirectoryInfo dirinfo = new DirectoryInfo("d:\\111"); DirectoryInfo[] dirs = dirinfo.GetDi ...
- 在Eclipse中执行Andorid test preject提示The connection to adb is down, and a severe error has occured.解决方法
启动android模拟器时.有时会报The connection to adb is down, and a severe error has occured.的错误.在网友说在任务管理器上把所有ad ...
- LeetCode OJ 110. Balanced Binary Tree
Given a binary tree, determine if it is height-balanced. For this problem, a height-balanced binary ...