简单动态规划——三逆数的O(N^2)解法!
【算法】简单动态规划——三逆数的O(N^2)解法!
问题描述:
三逆数定义:给一个数的序列A[0,1,....N-1]),当i<j<k且A[i]>A[j]>A[k]时,称作ai,aj,ak为一个三逆数。
现在给定一个长度为N的数组,求此数组序列中存在三逆数的总个数。
本人暂时只想到O(N^2)时间复杂度的解法。不知道还没有没更好更快的解法。(谁有更好的解法,欢迎分享~)
O(N^3)解法: 这个最直观了,直接三层循环进行统计,即可求和三逆数总和。代码太简单了,就略过了~
O(N^2)解法:
1.进行预处理,先用R[1..N]数组记录,R[i]表示在第i个元素后面比第i个元素小的个数之和,此步为基本的动态规划,时间复杂度为O(N^2)。

for(int i = 0; i< N; ++i) R[i] = 0;
for(int i = N-2; i>= 0; i--)
{
for(int j = i+1; j <N; ++j)
{
if(A[i] > A[j]) { R[i] = max(R[i], R[j]+1); }
}
}

2.二层循环枚举每两个元素,并进行累加求总和。

1 for(int i = 0; i< N; ++i)
2 {
3 for(int j = i+1; j< N; ++j)
4 {
5 ans += (A[j] < A[i]) ? 0 : R[j];
6 }
7 }

最后ans就是结果。这步时间也是O(N^2)。
因此整个解法总的时间复杂度还是O(N^2).
出处:http://www.cnblogs.com/BrainDeveloper/
本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利。
简单动态规划——三逆数的O(N^2)解法!的更多相关文章
- 【算法】简单动态规划——三逆数的O(N^2)解法!
问题描述: 三逆数定义:给一个数的序列A[0,1,....N-1]),当i<j<k且A[i]>A[j]>A[k]时,称作ai,aj,ak为一个三逆数. 现在给定一个长度为N的数 ...
- ZOJ3574(归并排序求逆数对)
Under Attack II Time Limit: 5 Seconds Memory Limit: 65536 KB Because of the sucessfully calcula ...
- [Luogu2359] 三素数数
题目背景 蛟川书院的一道练习题QAQ 题目描述 如果一个数的所有连续三位数字都是大于100的素数,则该数称为三素数数.比如113797是一个6位的三素数数. 输入输出格式 输入格式: 一个整数n(3 ...
- 使用 Tye 辅助开发 k8s 应用竟如此简单(三)
续上篇,这篇我们来进一步探索 Tye 更多的使用方法.本篇我们来了解一下如何在 Tye 中如何对数据库进行链接. Newbe.Claptrap 是一个用于轻松应对并发问题的分布式开发框架.如果您是首次 ...
- HDU 1176 免费馅饼 简单动态规划
世道很简单的动态规划,但是却错了,让我很无语,改来改去还是不对,第二天有写就对了,之后我就耐着性子慢慢比较之前的错误代码,发现 第一次错:纯粹用了a[i][j]+=max3(a[i+1][j-1], ...
- FusionCharts简单教程(三)-----FusionCharts的基本属性
通过前面两章的讲解我们可以制作出简单的图像,但是有时候我们需要对图像进行一个精确的规划,比如设置背景颜色.设置提示信息.设置间隔颜色等等,这时就需要我们对FusionCharts的细节有比 ...
- 07.C#泛型的限制和可空类型的简单说明(三章3.5-四章4.1)
自己在写文章的同时,也是在学习,对于书中的语句很多其实没有太好的理解,读一本书,要消化!!!三章都是讲泛型的,最后写一下泛型的限制,对于本章学习的完结,one end,one begin. 看下面的代 ...
- TCP是什么? 最简单的三次握手说明
TCP是什么? TCP(Transmission Control Protocol 传输控制协议)是一种面向连接(连接导向)的.可靠的. 基于IP的传输层协议.TCP在IP报文的协议号是6.TCP是一 ...
- mongo 固定集合,大文件存储,简单优化 + 三招解决MongoDB的磁盘IO问题
1.固定集合 > db.createCollection(, max:});//固定集合 必须 显式创建. 设置capped为true, 集合总大小xxx字节, [集合中json个数max] { ...
随机推荐
- easyui datagrid 单元格编辑 自动聚焦 、全选
$.extend($.fn.datagrid.methods, { editCell: function (jq, param) { return jq.each(function () { var ...
- ASP.NET MVC性能优化工具 MiniProfiler
ASP.NET MVC性能优化工具 MiniProfiler 2014年04月19日 ⁄ ASP.NET ⁄ 共 1159字 ⁄ 字号 小 中 大 ⁄ 暂无评论 ⁄ 阅读 325 views 次 MV ...
- poj3070--Fibonacci(矩阵的高速幂)
Fibonacci Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 9650 Accepted: 6856 Descrip ...
- SSAS系列——【07】多维数据(查询Cube)
原文:SSAS系列——[07]多维数据(查询Cube) 1.什么是MDX? MDX叫做"多维表达式",是一种查询语言,是一种和SQL类似的查询语言,它基于 XML for Anal ...
- 使用微软 URL Rewrite Module 开启IIS伪静态
原文 使用微软 URL Rewrite Module 开启IIS伪静态 在IIS5和IIS6时代,我们使用URL REWRITING可实现URL重写,使得WEB程序实现伪静态,但默认情况下只能实现.A ...
- 简单DP-艰难取舍
艰难取舍(seq.cpp/c/pas) [题目描述] 由于hyf长得实在是太帅了,英俊潇洒,风流倜傥,人见人爱,花见花开,车见车载.有一群MM排队看hyf.每个 MM都有自己独特的风格,由于 hyf有 ...
- ASP.NET MVC应用程序把文字写在图片上
原文:ASP.NET MVC应用程序把文字写在图片上 Insus.NET实现这篇<MVC把随机产生的字符串转换为图片>http://www.cnblogs.com/insus/p/3624 ...
- Kafka集群在空载情况下Cpu消耗比较高的问题
线上kafka与storm的空载情况下负载都比较高, kafka达到122%, storm平均负载达到, 20%, 当前是通过Ambari下管理kafka的, a. 先停止s5的kafka进程.b. ...
- 关于Office 中的墨迹功能(可作word电子签名)
原文 关于Office 中的墨迹功能 通过使用 Microsoft Office 2003 中的墨迹功能,可使用 Tablet PC 和 Tablet 笔将手写笔记插入到 Microsoft Offi ...
- Spring之SpringMVC的Controller(源码)分析
说明: 例子就不举了,还是直接进入主题,本文主要是以SpringMVC的Controller接口为入点,来分析SpringMVC中C的具体实现和处理过程. 1.Controller接口 public ...