回到目录

dynamic这个动态类型早在.net3.5时就已经出现了,当时是伴随的Linq一起让我们认识的,但在使用时总觉得有点别扭,因为它是internal的,所以不能跨程序集使用,这对于分层开发的我们来说显然是不能接受的,所以把dynamic了冷落了很久,应该说是5年吧,哈哈,这几天在睡觉时,突然有个想法,最近在开发SOA时,为了使客户端与服务端有类对应关系,进行序列化,所以总要定义一些DTO,当然你可以把服务端和客户端都引用这个DTO,或者在客户端手动写一个也行,但感觉这两种方式在程序解耦上都不完美,这时我就想起了dynamic,我在序列化时,可不可以用它做中间类型呢?

经过今天的测试,答案是“可以”,这是让我很兴奋的,呵呵

测试代码:

       var url = "http://localhost:24334/api/UserApi";
var handler = new HttpClientHandler() { AutomaticDecompression = DecompressionMethods.GZip };
using (var http = new HttpClient(handler))
{
//await异步等待回应
var response = http.GetAsync(url); //将服务端返回的实体序列化为dynamic动态类
var obj = JsonConvert.DeserializeObject<dynamic>(response.Result.Content.ReadAsStringAsync().Result); //遍历这个动态集合
foreach (var item in obj)
{
return Content("userName:" + item.UserName);
}
}

结果代码:

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAA7IAAAEDCAIAAACH669aAAAgAElEQVR4nO2dTYsdR5qo409o0wvXrMcrN/EPBKr+AWY23TQMsSuE9uPFUH0X3kgp8IBq58UgGIOORgZDGgzGNWYWfSUGeeCWunGOsRszIFdLY9RzZpgevIi7yMzI+HgjP87JOier6nkI7FKe/IiMiMzz5Jtv5lEWrhTfv/fB5x++2nctLgelUcqU4bSq0EoX1Yilq0KPmxGGKM3INodRcBJYFJOHd2mS89KEExMAbMh6vV6v12rf1YB54RtxCrEYV4VOv5DGLgybghbPCyeBRTFxeKcCXBqlONcAXDho8ZWEb8SJlKb7uqkKM9HOUOM5QIvnhZPAopgwvIkJA+wRtBgAAAAAAC0GAAAAAECLAQAAAAAsWgwAAAAAYNFiAAAAAACLFgMAAAAAWGvX6/U///N/z6TFldXKXsCLqi76/Ve8GWpuXr1494OP3/7g4/e+FqbHE2fAHyEz9qa3qqrQaovXhoqvXOI9TAAAAEtivV5/9NH/zBYtNsrO/TU/6bcVNiMnUuKmd1Cfi+Hrp28/fPFt+68vPv343d++sdZa++bDh6mqihMlWgN+O/ZgcQ3bvEs1V6WoRy5Gi4UNTV9ZujRvPAYAAFgMM2vx/OwikosWb6zFbz586Naz2RrGk1lh3HtL1eJMzbhVAQAAsBAGtNiP/rq/q8Iq1RbTfFqaZorvDUZZrds5ta3COaM1SCQiUlqlrJtQaKuLZJ3ehrqt92V31L+q2aKLKp7UTBUn1mKjtZs4jzOLTRe0vLZVvY9F2D7tzDGSFn/xaRfoffuDj9/+4PMPX1lxYh3offehm/j0i3qd9R8CscW61foTv/3t592GmuqFG3r44lubq5KVVFXozXhqMzHsuDhdIpwqbSuY09tQdjRcressAACAK8YmWlzorGJGHxlPRt3i3Torqz3HlRBCad0mMou79ZcmsPZAH+OtiJmpIy3GX7zXcULh6jfoXNP5lwSmtFXR7FfzUZm/zPj6aWiWU6PF37/XGW37aajaQ2tIJ37/XmfV7iN/Q37ShbjCdIQM5hm7idKcQQf2R4tL0/2r+6h388SLAQAAlssmWlz7qFKCaKZa3GfVPaHNGkkyq6Ixv8h0Cy8w7LR4XBTO95LNtLjTmrkcR2i6ttmD+HftwWXzT2fJAtsmUQRpwc3iW2pxmJfcBpL9DQ1psdBFfb2ZhvnjOfs6M9xY5iLHl+WEqtDp6BAnAgAAwK7ZSItbCh177UgtdmI3ZK2yZNarilaexlb3pcVzRYsFLU6vIiqrtS0LawqrtS16dnluLW6ixaOTKISJr168K1j1FC2Wo8Vpb4ox3K21WLLZXi0mWgwAALBcxmpxndWavGEqTmMY1uLhxIlgA2JOQpM07BzRX2c5c7R4xFu1otd4zaM44hWFkTKkjbZG27LOtNb5N4H0anHy2Fw60TPUVy/ebf5+8+HDj9/+9HtpeyOTKPrfVhFrcVLP/qsUKTWiNH3RYq8HS9OfWyy/RWLouojcYgAAgIUyoMXdM17GFloI97pb9v5ElaYR557YG3qhW8aL40foukfuvHpurcX+g1o9E4OnueYSHDlOXwZNV2+q0E1WSd2w2e1ntdhPO/benhZP/P49+UVsuelvPnzoL+7+GW4oyHiuA885LZbrmT6VKfZm10mmaMO88pwupq+LMgwIe58Iz/G1mUF5LcaKAQAAlszOX9AW5hP7T8XlFlj8m12vyU3wbV45fKEsf4RYa/lFDwAAgKWzDy3O5ATnF1m49qDF+2bpI8QSKQYAAFg++/k5DzP2kbuW0izYHtDiBbDoEWJtVZh0iIgTAQAAYE8s/lfuAAAAAAAuHrQYAAAAAAAtBgAAAABAiwEAAAAALFoMAAAAAGDRYgAAAAAAO1KLmx/zWvQbsAAAAAAANmeEFvObAwAAAABw1Rmnxdfh1yoAAAAA4BqDFgMAAAAAjNHi0pBDAQAAAABXm34trp+1Q4oBAAAA4IozLlpMEgUAAAAAXGnILQYAAAAAQIsBAAAAANBiAAAAAAA77lfuSsNjdwAAAABwpRn1488WNQYAAACAK81YLQYAAAAAuMKgxQAAAAAAaDEAAAAAAFoMAAAAAGDR4oYzo46VXE76Xk5XrpQ56/tUn3pLnxf6OPfcYmmOdXHuzSlstzS5SjalZ+V99QQAAAAAtNhaa+2ZUStJKSU9rU61k90+LT4vdKDXxpyEFuttURBoWYt73gbS++mZyUszAAAAAOxdi8+MEI4VJ27GeaHHBEqnRIsjLc6Ybh397WLA5UqpVSn7t9tfuRouijxBi6tT3RtXDi0cAAAA4NqzXy0WPa9f/jbYhJecYK21VXGSiPLc0eJu+nmhV6W1pWnXEy9yZlRcw6FocRSHbhZPtFjcIwAAAACQ2KcWi07Zn607B1O0uF4gVMxxSRRVcdIXrFWdJevivDbdMbnFrRZ3n1bFybAW+0kaTdwaAAAAADz2p8Uj0ieCFIWTokpzcNv50zn9xZ25xjkPQX5Cj8V6iRADD73ljLOLFsufHitzljfpZp2Ttbiz9s77pasCAAAAgGvPvrQ4zW3ITQw+aiO1rQIKUd5oJakFzuiFTknT6SMEulbbJiNCyhuJY8bTo8XuMsO9BKPvbRgAAAAA15f9aHEc9M1O9P1SF+etB5+ZOgbs5TMkc3prGKnFfnaEtT2ZFc68Ay0WdyomWWe5qp/MM2WPTDcSPC23OLh+cHXuTRcBAAAAuLbsQ4vFxFlhov+23dbqzgt9UpSn2pwW+qQomiQBac6GYS2elhpxZtSx0qdlFWhxaY6VOinK88qfrb94dfCM9rzqGmGLaLFLn4j+uPjUbQAAAIBLye61WEw8kCb6t/u71zWU5sSYkzq2qvWJe14tndOtWdBiKayb1CENrApv/22SknsevIvfOyEEa53RVsWJ90q4nBbL+J921wbhs3fzvuUDAAAA4Oqway0enT7RTG+DtUXrrFVx0sRuq1PtJDU7p/B0nR/KDVIgBAnO5Rt4weCh4GtoxgNaXNekrZWgxf0RaO/aQHzCjwwKAAAAgAz7/jmPJXBeaPHnLRKJ7H4jY/KvjXRGK2l0FMTthD6s1chocRP2HvhFD/wYAAAAwAMtBgAAAABAiwEAAAAA0GIAAAAAAIsWAwAAAABYtBgAAAAAwKLFAAAAAAAWLQYAAAAAsGgxAAAAAIBFiy8VpVF66u+IXA9Ko9Qmv2pdFVopFS1bFZp2BgAAuH6gxZeInBZXhU6lUJw4ZVMeveuRN9QI5+Y1GM92eyouvqlmAwAAwOUFLb5E7EyLJ1lhfuvFdr46km1j6HJDEZkHAAC4buxci0urlHUSUmirC2utLY1Vqi3a1j5SGqt1N73HsEqjtNZRdLO9Q66UUs5xgonNGsWlw4Bps3g4Z9865a1v2XZBCFcXVTypmSpOzO1mpjWFCqd7lNmQU83AOIVWCvTb5S7IjSy3siC1fu27v/M7n7l+EFc8V08CAADA8thDtLjQreBWVnuK7DDKtipjlWkmlqYRaBHfr1oVKo0gT6ID+Uu3MyRGZ8rMdrLr7FE3j8D2BnU13Xpu/bLWxbuZq1Gnrb4Di3skrEpq7qFKhlsVG1lS0lThs1ostl2+KYgXAwAAXC/W6/Uf/vBfO9XiqmhkNzLdwgsMOy0eeQ/eVza3GVk32+me8gQC1PwjXGNVaBfITJVLWOcE2R1PZusTtDjZTYloyWbO7B6lG/KmxCoetXxnu+Ey6W72RLCjXc9qcaYLclrc9jkAAABcD9br9Xq93nVucR0PdlHheopTEzOXFvdZTVXoIDXC90VTxhrmRaBFMU3WOd6ppkWL59Ti7IbEfc/uUbKhgT3yW96t3l/7FC2eEi2eqMVEiwEAAK4X+9HiJmm4zSEOsinKmaLFg8+NBXft/bivi172y5mkTXImwFz0abFYlXCitJvuExUFiNMt5fYo3lAabM7mWLj1a52Icvx3ZvN99h9d+kzTYnKLAQAArhn70eLafX3p6B65M7bQs2hx9ERYz2N4wnzRZCkrNUh7TdaZXesW5KW821bPxGyF6h1IHDrZqdwKgg0lOiklYQTbisLHvfafbl3O4WjmKlwQul+L5UpJr23jvW0AAABXlT1p8bK4JrfLl7qb2wbWLyAwLz/gx+98AAAAXGXQYrtcX5yZRe5mVejtpXZmMc5GigkVAwAAXGHQYrtQX5yfxe3mnEkJpZlNWavCLKqZAAAAYCegxQAAAAAAdr1e//DDbt9bDAAAAACwNNbr9YsX/40WAwAAAMC1Bi0GAAAAAECLAQAAAADQYgAAAAAAixYDAAAAAFi0GAAAAADAosUAAAAAABYtBgAAAACwaDEAAAAAgEWLAQAAAAAsWgwAAAAAYNFiAAAAAACLFgMAAAAAWLQYAAAAAMCixQAAAAAAFi0GAAAAALDWrtfrH374L7QYAAAAAK416/V6vV6jxQAAAABwrUGLAQAAAADQYgAAAAAAa9fr9e9+t+Dc4upU69Oq+cd5oY91cS7MVZwodazUsVKr0p6Z5u+umDJZrVqV6Yp8ypVK5qmKk3hV1pbmWHWV9Dkv9LFSXZ1LE1est55nRp0UVe6fIoPzhDMEzZulNMfKnAkfVKda2Iuu0UqTtHy5atvqvNDJpw3nhXaVHLPXS0doh4nzVMWJa9huzupUX/7GAQAAWArr9fqjj/7nUmhx6pRON1tbPS90rcWBzpYmUgfBm0V7roqT2uGq4qTeltPiaJ2tODYenFthv/pEn1bFSSCjnVD24eqc+Tj04HFaPOimac3r5kr3tzSu13q02L8miXtz2cgDYJwW97VwVZ27q69mbdWpVse6OCtL4UIRAAAAJrNvLRZ968yoE2NOlD6tGm9LFCqMk/VqsR96bGVCx+4Y22S58sOfRReNdkWUmLoCWUZrcSTuqzLxrdaYs4qfzNnsZhBuz2mxHAaWQ8KpuWa1OAjSB33q6XK0krFanK5hbs4LnYmaDyH1+7SOG1obAAAAbM1+tVj8gncTS3OszUrr08KcFFV3K780kZalSRSr0p/o9MKXafd3E3WbxahGanHsuIlE+i54ZtSqDEPFXiB5yBrLlWdX54U+Kcq88rpNjI0it5UJ46M5LQ6l3NNiKV+lXWZEuku9jgvX4k02IaTNiLJbrpRZGbnNNxdoAAAAmMA+tTgwtszEwM8aP0hNuj+JIrv1/uTjervlShenGS9JA8ZJTDeczdPiINQ9pMUnWvf4ZbNmJ7Xpp94uey1TrpQ+0aJUNbufE7JcML75O6PFZya4/Gi1uFypOIV6wALFWOkOtHhTwguApLW7OxWD1wDlSunTwhxrfZK9kAAAAIDN2J8WZ9MngonVqdanZROPzHpAosWySAVxzdBOvKheXYEu5OxJWJiP0Sy5SpcK6i88gjZVi1dlqH2y+Lbx75wWR1H20hyb4lTrlUkj3P7VSHVqvO0KcfogGN80WqrFdePHWmxWOc0V1u+WcvOHyR5t0kW40TYfV+uTsIujS6P21kF9qVCn8bgIupszqUwwxsJrrXZxr7sjLS5XSh3r4sxLzzgz0oVKMz7buyW6OO9GLKFiAACAWdiXFouxvXRiHQQtsi9waGxDiBZ3/iG5bLvyvJA16RClOTalGAOODM/lY6wKL0052sQULU6js92LONJsBN+N5LhpuVK+AdcK2151xPMHWnxeFid1XDlZbXAZ4LYr7FHbMnG1B16kkD6WFwWnhexkz6S7GfyXafSNvfbSopk/TCaJHD37dGMcEvYu9txHtUCHvdbtaf1pF0LOz1k34+iMFwAAAMiyHy0WX6qQTixXpmi9JBQU4aUNcW5xa2yp2Yy7O182Cc0nRdWoWD2lUfByJWixk542ipla/oa5xd3fmXhwl4qQecNDeVpUXepzZ4FNskQS5O67GuliqO6VCNFVSrxH5crPOXaLDDw61oSffe/Pvrutk90gazzc3+Rvfzy0Wuwuh6TBM3j5Yd1oCS4JStdNU4O7w48/osUAAABzsA8tFsO36cQz072JwtpQSvJR2OCRu/pes+xeSR5nqtqmrFc4UoujZ8iEe9zbJFEEdU/8srf4L39YldZLMm6bV3gZXGRv3pQkscFGecO9j9ydtdHNSN/TpJrgNdVtaNafLaPF7d/+xYOoxUIIeXst9i+NzFm0VHA9U6+8/m+Y9t2XJ91khJNYDAAAMDe712Ix8zWd2Nhn/HMeyS8aNNNdoNR/5K7njVpBBmq4kpb6YTsvN3RAi8tTbc78HND2o0DIRr+grU+L89pUZ1/knMm1z0lRhXkaZuU3iLD+IBAerV9Oh033N/smCmm1md8Q8VXYa9smSbddeeOOfdIcVqDV+ilaLL1Aw7tv0ITPA3cXTL3y7ocodw2Wjk/XSm79mDEAAMCs7FqLR6ZPOOQ3haWBRufBnRaXprE9IfApOIf0/oo6FqtXpk+Lz4w6NmbUb22M/pU7Mbc4t/vBIqb0Fo+rdF7olTGhjAYv+nC/oCE9WdjzQ3eZfZ+gxcEYyHp2rIMuWB5nSMcZt3ISRRfUb/OeM1oc5d6IORjBI3cuTpzcLvDC/EKST9cL0XVCs6e9UwAAAGAb9v1zHkOkv8qWmmK5UuasURDvtWLhOxCcahwnAb/0EbrIb+JAcm23Tq0Sx8qmMWwVLfbzJVybeGInrDje3+S1yuJVRxAI71Q+k0crTRe7KbknkHHN6D1uNkrFHvcWtky0dcd0ru+uc9Juyv1QS0u//iLHAAAAc7F0LQaYzOY/RwcAAADXl/V6/Yc//BdaDFcEOUMGAAAAYIj1er1er9FiAAAAALjWoMUAAAAAAGgxAAAAAABaDAAAAABg0WIAAAAAAIsWAwAAAADYK63FpVE6/q02R1Vo1fMxLJKq0EoNv32tKrRSKp1z5OJjWdAAM8pe7KYqq5XdrulKM2fjXzlygxZkeo++i2Pmc8iFEh5xVaH3+I03fnjvt54A11eLbVXo2Y69Lz79+O0PmvLub9/Ms9JXL979oFvte1/Ps9bRvPnw4YiNlkZ5XPzJbPx3YVXo9BS8+Vdpe1b39/OCBphY8wEuXIu33cQmO7VUwkE/516lrTS63YIBukGltuygkYvP2HTB0dfs/dAKg82HS4+uy1Y6PrKecyDt1Kgr0wUMb66gYa9cWy2+EL797eczafGbDx/OZ9ibVmCUFndtvKiT2aweFqzMRTMuaID11Tz32Q60eAzZqu8ptHcxeDszs+1vrMXbR9h2psVzNZ0/pKpCK1MMrTC7xZ1ds42r5yxkjrgRB+IihveVOmHAZWPnWlxapaw7EAptdWGttaWxSrVF2/qAKI3Vupvec4BKYYDSKK11dNkbBFVmPzn5Wvztbz93sd63P/2+nujHld9++OJba639/r0PPn/3YTjx66dvf/D0i2T9Gy3eGXZQpWZx+8WnH7/78HM/LB1s5YOP3/7g8w9fZXY4PHu5f0mxVbnpxTnFnnNd7PdaJvxj0xOutHgYYWs/SasUrav954QBJu5mOm8YqIl3qTTBhKrwDplaizMHl1HeceQdXNERVxXtbNoabZWKj83geKms9rbuPokqKfZFrotHDxtx6REngelDUUL2hkmVb9ceffsHDdU/GOIa5YJuIxokt6HcHZKRi2/ZdOKhHR6x0aqSi9eo5aX8h1zlR5+C5AEWr7arwIh6Br0ZXISnG+o538jfbsOmu4zhndazNMlMABfCHqLFhW6/XyurvS9Uhwt9lcYq00wsTfMlLZCcZ0xpw7PL9DBMpEzjHNrTYina+urFu6Gtvve1tfb797ocie/fqx3066dOWzdZ3N96t9T37wmL2y8+Day9r/4p4XnP88W0O3JZDcKp3O85eQuDVZHnzCwexNqEKsWhi+bf4wdYtkGks3y25sHU8Nhxh4x4cBnPaMW4cj2xKho/rueviuCI69bc/jN3PCZ1FUI/UhdPGjZJyw+fBIKrtpFDUSL4Qh/s4t5MnsFBOy5eJ8bWJjSIuCFxj8YvnqvoyKaTdi/WKk/f4+buuTufnszly7ZxpyBxxrxZjqqn+Hl2JE8MCg/GYRcyvIkXw97YgxZXRSO7kekWOgx9WVuacU/5+MestVWT1Bnf4B+6Gp2BIImiTQ7upnz91AmoN7NzWTugxeMXrwPDn35vfdMNk5VdvvIXn4r6u4UW564o2ulJSqAQLsl0jXxileIN47U4nChVKa/F4waYvJu5874cJ4mrXXZxX+vJrlNbd5TZUIX9v6Mjzi1ilC3tgBYPpG34QWOp1YUuHj9sxJYfPglEsjJqKGb2TRdVqCQbVv4itXhSg6QbGh60m2nx6KZLD235gPM2HV8uxSeFYNd6c4tHn4LEBgmrFNv7cD1d+4grkv27p47xZ4NavIThPVhPgItiP7nF9Xdq9G2dBrQmaLFwXMYn0d1Gix1vPnzo5TZ4stsKa0aL0ySK8Yt3f3tTXr14N1XtObW4PZEOnNCqwr2jITPnlO+kTExntBbHyilVKVrMC4qPG2Dybo7XYhtqZj1B1mL3d6FlFXZ/p0fcbFocV1aOFgtaPHLYiC0/fBJIqzE8FDO7l8TqNqz8fFrcH7YbbhBJiwcG7eZaPKLpMrcTUi0eOFH7LR9Pj284hJvfUov7JH+4nvWq/KaZosXbRouXMLyJFsPe2I8WN0nD7nvdvyNcTo8WBxe2uTtZwjfi3NHijEq6NIZXL94VFFb02jcfPvzYjw3baYtb65KGOxX20y06erRYeOavNMEJPQ7Apff7JOQ7g8FGRn0n+f+KVWycFsvCJgYy07E0foBld1Paz9yNUa+BbXPIuMNEeZIaH1yiFktH3CQt9hOc8rVMm6Lbd1H9Rw+bpOUHTwLiF+3QUGw/yZhQt9AmlU+UTfaGjDTGV2pSq49vkHRDg67dv7hYz9FNJx7a3kbKNtG050JZWJW8I0Llt9JiaYtT61nWqcRCdDz4u+ccItdfvhe1sOGdryemDDtgT2+iKOMneLoHgEwX6BqrxbY5ZsKrcG+ScEjPqMVvPnwYP1oXTIzyKOJ3rvWEe5MXtE1YvJk5UF5vcReNzmixP3O3zvj2o9/GUXwwbvsgWiKvwbtfKPaXSlbQLW2KMKDh5k/jN25isO3M8zLCaNpkgMnzSlGlYOb4WyCMcTWHjC6C2HCtvL7RitHi9IjLabGfa6EyORjdPVXpoBK/44QZxw6bTMvLfdQfzBsYijYd8zmjGj3mu6kDgzaqVXhfJh4cmQNpVINkNiSscsriWzWdfGh7DVQWuo6nihe6UsuHh3vQeknlR5+C5AYJZ51YT29rmaaLmzHu5ClH4gKHd6b+sb8DXBBX+AVt/VxEtBjAsb8BFr6PYhkMRZsmr42wESyV9Hphg6G/7REzdNdrycj1vCy1h0vPNdPiqii661ysGOZm7wNshp+juxjmFGO0GBZMkNC10bif5fQRb/myRIKykeJLUXu4AlwzLXY3bUxprf2X5/9GoVAoFAqFQqG4co202Odfnv/byx9eUygUCoVCoVAodUGLKRQKhUKhUCgUtHjZ5bLUk0KhUCgUCuWyF7R4w5Ku8yK6By2mUK5eeXrv8ODg9iPho+d3Dw+Pjg6PHndzur/F9WQ/fXz71r3ne99TCoVCuVwFLZ5c3Eoenv7+L47+8S+O/vHh6e/dxCmrenJ0cHj3WTjx2f1b3sS0nt4X6pOjg4ODdA3CnCMrc/tR89/ndw8P3nrrrYPD+0/lCvszD67t9csfXr98fDus6uAaRlY1bUapVUet8+Dg6MlA72xeprZYsvVwYEwaV0/vHb4VcnD0ZO4dnL1PD1xte7wwv+9L69CgOw4O7z99fDs5vl6//OHJ0eH9p/V/n92/1TZCPX+queO0OGjMg7GH8A46yyvd8N74JJPp38e3pVPZpLEkF/+w6lv/hCP3gsqMfe326GDTHff71336/O5hdLRe0O6MqcwWjfP4dnuUjahb38Bo67PFaT8/0X3UHba37j0fVZ9RK99xBz2/e3jQnOvqg73Zrjd9qHzdUv8TLX798ofXx3n82dzitRD/9d998c2/v/rm31/99d994eR4oy7PlkSL/UX6h93U47z+Pn5+96g+zfUfBtHM/WurT3m3Y3kdWMPGVd34BHd46/DA+1Kf26ImtNiWW+9d9vHtg36NuMB93KhPuwpP2veldWhdwq//dNdal3W+2/zx7P4tyT/6tdiJy6Nutud3D0cewht11iwNu8lJJleNJ0cHBxua+tA3caBx00bpjsuMfR2L2qOjqXstiM6jo7H6svXuDFdm88Z5dv+WGwPP7t/dcNRFFdtykX4tHr+JiVq86w7yXSj3d1e+lrh//z5aHGuxOFuqxb4Q//nP//vnP/9vrcXqr/5e/dXf211o8UCXS3OOKa3CjtLiaObBtaUrHFzDxlXdXIvvPvblY94v+6ktdkFa7FvC7Fp8QX262el7aR3aeGqsaM/u3/K8LfWDp/cOj+51X7ePjroAj0i3uB9d9iPHTYNc3AG4Zdn4JDNVC8bXJC5P7x3euvf8ZXtX7dbh4a17z18+vj063rnjMmNfP797uPFlRtSqzR9P7x1ObLdtdmegMls1jnz/Z8uKbbnIXrR49x00WYvvS6DFWS3+y7faNvnpTarFtf76ceJ6yrAWezeeAi953Ez37nj2JFFcnBbnR/wzV8P7uduUI04Hs0tYbs3e1+ph2ODtjvjh0qOjOtWkWcrzkiCY4eUexB139Li7ndqJSLytqS2WNld4grh3O7fFbDf9EH0DicMvs7MbbW6ePvXbKmlVubbeaXQhHfroqO8ecfPps/u3Dg5uHR7WFRNSX5JNPDrKO4qvxc/u36q37v64oM6ShpbYnoMdN7WFpfHc3Sa+de9J4HOPbx8c3j7y7r3WMfWuqYMso+hM8vzu4e1HnRy7XmimJ/MPHLlJU/glexLLfY/Io3eu4gdEs2NA6krhdNG0RtytwYH2POm1ZMEbD6cAABRFSURBVAwIE8V27q/hLF9PT44OkrD3iC+dMYfD03hwDpzEhL2WapL5iumdWejKZJTuuoM20eL/96+/80utxTVo8euXtRb/9Mb+9MbWWvzTm3q2nBbnis1qsRelC7LoDpoRI6TWvX6ZanFwVuoV3+z5a/wR3lXS3c+VU5mXqcVx8CYwLfetmRyTPcdh0CbNLj++3R3YYn6C+OTTtlrcOlawxaFuilPHgr1IbG/rzW3bp6kr9LRqT/ctpEObtopN16vSo6ODJu7oyatzL6nIGZlRRPng4PDus87ktgv1DXWW/9hDX3uO6bipLTx0OvVOCK3IPpGSIJ/EycrpmeTw/tMfXj86atbsWrWZkj3ziIdSOlvQv8k47/0eGWjtrYuXzFMP5gOh18Q+TU8XzbAJB2RyoAm9Njgwcqesi9bi104QhTtyfV864lARK5Z+6UsnMTlTX6iJO0sI12/xzPmu7L9PsosOcrlhURP507uS02IHWvz6ZRst/su3lF/sjFocSqp3Ug6+FNOJUT0zp++09BrzqNJW49lct6F3rsV17C2J9knRoNfRiSD+tHuQouc7IN50dHG/dXOJJ4jx3SR+xcq7P7yzs42KEcPPS9cTWjVb26V16OuXkpU6tXr5w+tH9+4/uudrcReDeUuMUj++fXD0xF9DUMJ05Kf3Do8eb39amDpWNxhmGw+nwdOp57uuZZLMFs+9MmeSH54cNb3TNObTe7fbmNntRz9I8/cPs7gpvB6M+mv4eyT390wlrlL/rvWfLp600U2vkvJZOum1CSNhXA3nbSuXGTXlS2fM4RBcGPSdxJKxMVATYcDLM4tdGQ/4vXSQfzUba1I0c08SBdHirpm6aPFPb5po8U9v7BQtHnjkbvh05u4W9WnxHqLFl0CLwyvCcMfrkEZ7huoJz6R9kZqZ97jSsEXNdFkiTNnEU5u3Hwzu/sid3ZkW++HSPktIa7u0Dm32JdTiOJjxtNPi+3cPD+/ec5HpTsLiJhLyIp4cHdx+VPeRC9VM/urapLP6htbYYTaLFsun07p5gwB8pMVB3Cte1guq3X7UXdI8OXIO5HVEOH/voRQ3RTq85Sl70OJcDGJjLX4WRrWlA03otQmV3IcWu3S1kV86Iw8Hf3AOnMSS8T9Qk1x9pI8yZ35vwO++gzaJFpNbHDMqtzj/yJ0oxDX5ceDf/OpuNSZf+b1aHHR5rxYPfDp+4D5ZfBLF60dHB64CaRJnez71Wrvv4HR9dNDdIepLdMkdzL0Ksn1usbRF6TZlzzlFWs/YnR0xKrYq41q1r7ZL69CmrZqTgPeaiKfeufvpvTCJop0tiRZ755M4Zby979l+gdUbbW55X8gzYdO1eHzHTTtkBk6nL5/dv3V4+yj+Bu2JM0kXLe7JyGZQ3X7k/ki6O7kBPakpBpMoeu4+51tyuxK+9zOoqhvb0vmn5+zkX7RLB1rca4MDQ2yEwRpu3VaP7/tWOuFLZ9ThEA5OeZGe8d9fk2hKz8x9Z3750mUXHZTzItmCeBOFzMZvoqjZ5I3FXQ57MCCOjg695J64+/ekxc+D9xY/dqnx9zf6xgrvBYtzbvsMb7eJbj3pKyT912323M9qj/AD73B96623DrpT84jvoXhbU/f3SfxSyQEtFrup+TR9fUF+90fv7Lajor/EcQg/5OntQk9tl9ahTR2kaEp3d7jT4sPDWwe3Hz2WosXSGy0eHTkt827l+9eKTTps5sm/bTsrN1Zz7Tmh46YcMgOn05dBC3TSWQ+wu0fRaaqzluTKpPcyKZ6//8gdHI2554YHVXjjlhwq3tVaFHd/6623vHdxjjo7df0iH+NRr43ZnYFTllTDxFC3OxDCsO7gl87w4fAoHpzyIn3jv68mU2ZOu7L/bc3zdlC25SdocVp4b7G1m763uC7p2jY/vwx08C7fW7zP0vdAPWXhJZNgQJ8KxfMJHz/u2zxmVDdpEi32b4xIHXHQfod1T6NHSiG+D+v6dNaMexqYynJfWnyBLXD16nwZG4eyvRZHBS1eWAkvrXb4K3d7LNsEtil7LhlRo08vUbk2nZX5VZTrVC5hX++u1y5h41Dm+JW7qKDFiyl++mM7cYn1pFD8rBW+SCiXoDy/e9gXRKAsstBrlD0UtHjR5bLUk0KhUCgUCuWyF7SYQqFQKBQKhUJBiykUCoVCoVAolOusxRQKhUKhUCgUiivXVItrPgUAAACAa88nn3zy0UefXGst/hYAAAAArj2/+93v/umffr9ILT4v9ElRhdOqU61WpTDzmVHHqq80S5XmWBfn/pLpFIkzo46VORtf+9IcG6mik+ZxdauKk3FbPy/0tHoCAAAAgLXWrtfrFy/+e5FabG25qnW2Kk5E2fV09szIupxyZlRk2+mUpCLmWJmVUaLFnhc6qFU9zzgt7t+uv1PSRYJUT12cFXp40wAAAAAQsG8tFpW0m1iHS6viJPW8qjjJaXH4UUK5UuY0ctmu6NOoOqVpJ1anekig/aWSOg+GtINAb2n65kx30At7n2PGAAAAANPYrxaLIdV04tRo8YAWT+C80KEojzBjQWfFrIZypczKJBbubchrh+pU96VGCB48JlwNAAAAAA371OJyJfiim1iulDpW6qSorBgtDjkzalU2i6SlFVlvnUJ1oiTj6lRLQdlxecaep0q7WRUnXgQ6Tf84L/SJMfLFgJ8q7eqZnTOn3QAAAADgsz8tHkif8P9ZmmNjJOXtdLMnWhylHbsk3dBuy1VgkG1aczchDL5WxUkzQ+ri+rTyU4EjLS5XSjUZwO30xLPLVZw6kosWR9VOyT6kCAAAAAAe+9Ji8f0PyUSnxSdFsdLFee2LzX99UwzlL1TYnBZb26ZnmGJUakRfxDoOCXt+H8W/w+zhbp31p57j5lJH4mgxAAAAAGzPfrRYjHEKE2u5zCdI+FrcLRu9tKFPi5tlRyQb9Gpxs85uHl/TxVyREYyKFrd1ywk06cUAAAAAo9iHFovvGhMnnhl1UhQrZc6COHEaLfbVM9LrwJjDDXlC3ISN8xLZp8Vu622V/NcMBxkddWXq/4Z5GkGkvD9dWHpnhfiIIU/dAQAAAIxl91osviYi8+6I+o1mJ0VlIy2O3kTReWH0AgebanEdga5fNhylIpxl3kzcbCLzUevZ3fN8QYa0v2tNPV2VmqByvYbM1suVUivTZFfLuRNoMQAAAMC27FqLx6ZPWNvlBgzm0bYaKr07Ivx9uDOj+vyyr+I5xXTZHS5OnAvluswKwdTb6X7FvFzkdutnJvdmZZIoAAAAALZh3z/nkafNTBh+8szlVKj4Wbr4dWz1nFZ6fcTQ02xjI6+d4rsf7xDfv9b7YuP+h/OaFItMAsYGdQYAAACA5WoxAAAAAMDOQIsBAAAAANBiAAAAAACnxX/8439SBotS9rKUvbcVhUKhUCgUyuUqaPGEopT96T/+dvkFLaZQKBQKhUKZWkiimIBS1v7pN8sviv4EAAAAGA1aPBm0GAAAAODqgRZPBi0GAAAAuHrsWYtL0z4fZna6XaNskf6gXh+lUar+VYwL1OLnv9BKmdXFa3FltbLz/chHaZTOtmdVaOV9XBW6Z2YAAACAPbFXLS6t0nYvgjRRi6tCKyeRFxkt/pVRPyue+1PuFO9sKMr90eLpFwY99GqxrQodftpdYgAAAAAshX1qcVXsOkjsmCaFofXtNoniorR4Vvq1eI4FAAAAAC6YZWlxl1OhukByaazW3fQ6zFgV8pzpxDphwE2vg5RGSXPmqqmD2KZSRqmfl5626vfv2D/9pvy16njnF9WfflNP1O/8zE3uEVy3uJsnWKFSqg0kV+93K6w3VL3/s2Yr7/zcvKOUUvr9Ozktdq3k75RRXiP3NkhpvBo1blsapbXu9rJs2y2alG9UAAAAgD2zJy0u4x+eMGXjr06VCt14W2k6ey6N1YW11hppTh8XDy50s0j0qVtkKHIcRzaVqroI7vNf6E6RhVyI8tdK/fpXTnNrgZ4SG06n/MqEUm5Wv6ne/5l65xfVn35lVPPPHi0WG21sgwQ66/7hZ0WkwisqMPFiAAAAWBZLihaXwT+rotHZ0iTWGwaA/cBn4cWVa+sSJc+fOKDFidQpZav3f1bLbmi6d4p34shu+etJKRAjtPj5L7wgbBNdbuvTGPNmWjyqQUrjN0abNRw4biK8ohYnCccAAAAAe2VhWuzdvneBYVmLpRv9YshzWy0WosW2jQf7T8g1kdo0Wjy/FrcZGq7sVIu9xmj/FWsx0WIAAAC4dCxJiyurJTkTtDg0YH/xZlrZRYv9HAx/8dFanOYW2y5p2Bmqn02x+vm80eIw9cL3751rcfB6Nae2nuMK71+TtJjcYgAAAFgYS9JiG+QcO2kStTjKTi7bOd1bkAvduZ2fWeEeuRutxbHCNW+iWP08eoSue0Lu178o3pmqxX4CRpeD4TYUTOymKNV68Hgt9ltDTDUZaBDvmbu2VYLH8KR8iXgiVgwAAABLg1+5G0Pwol1+5W4iiQPzix4AAACwPNDicXhijBaPoiqK7j1tvhUTKQYAAIAlEmhx/Q+KXP7h17/8h//84x//Uyn703/87fKLUna/LfYPv1RKKfXLx8H0//v+L//PV/vvTQqFQqFQKBSpoMUTClpMoVAoFAqFclULSRQTiH6IZMkFAAAAACaBFgMAAAAAoMUAAAAAAGgxAAAAAIBFiwEAAAAA7B61uPl5NF5jCwAAAAALYE9azA87AAAAAMCS2J8W8xvAAAAAALAY0GIAAAAAgH1pcWnIoQAAAACA5bBer1+9Wu9Si+tn7ZBiAAAAAFgQ6/V6vd6pFltrrS2NIokCAAAAABbDnrSY3GIAAAAAWBJoMQAAAACAXa/XH330P2gxAAAAAFxr1uv13/zN/+7+V+5Kw2N3AAAAALAY9qXF1qLGAAAAALAY9qnFAAAAAAALAS0GAAAAAECLAQAAAADQYgAAAAAAixYDAAAAAFi0GAAAAADAosXXkvDNeJ/deXjjznf2m69u3vjkwTf7rNdcXNAeVYXmjYKOqtCKn+QBAIArxXXU4kLbXchNVWjVMX2LVaG3kbDc4sn03WjxZ3ce3ujW/92dG19+dlGburA9Kk0sglv20cAW0u1tuE7Vrac081WYF48DAMDVAi2+ILYPpl2MFqeq9c2DT24++HEHqnrz5ic37nxnrb3obU3bo23k85JosdaumnNq8Vw1BAAAWAZXRItLY7W2SjWl/uKvim6K0raytjTeFGWVsvV3umn/8P8W12mUN1HbrBFkAmml8QLIut2O0loHE4PZvFmDAPT0xUdr3Gdf3rj51Tfx3z8+uPnwxo2m3Gl8M5h488GP1lprv7tz45Ob3fQvP6u1+MFXd5rwrRPW7+7ciBb/8cHNZtmbd768ecPFmMUNWRvHoaczSu1ck7rWG99HVaGbHtLG6KA/+uvi/hWss62BNBii0aBM2aylaFfltDgdirl6ihuyXSXCARUGpwEAAC4RV0eLlen+1oW11hpl3Re2HyFOo8U5LRbX6Zb1l0orJKhB4BDuH75B+4uJxrHN4rlqpYha/M1XN9Pg62dftgFgf4bv7nTe/F2twp/deXjzwY/fPKgDxlIct9nQjw9uPrz54Ef72Zc3bnz5mf3xwc1PHnyT29AcjI94pk06qo/aGwdNT1WFnqjFua5MB4M0Gur/tbNI0eJmxkw95Q3JNQYAALjMXB0tjr/sK6vDwPAGWpwGVsU5xQoJthAqiacdfuZn3mvDZOU2bjh68cw0CTlabL958MmNG0Fotp0SBIZF6621uLVkb4ZvvrrpFm+1+M5nzoMbLc5saBuS5hxMlB2hxVIfRUY6XYu71XYfyoNBst52LfX/vRn8VbRanNYzsyFvh9FiAAC4IlxpLc4kOexIi4ditaGupHNIyiUYyBQt3ipa7Pjmq5ttGkObxRvRo8X1Il81MzQhYX9DWS2WNjQHs0aLpT6aQYu9NXWZDdJaerS4XqQw2ZsMWS3uax6ixQAAcHW4ulocJjz4FLrJiPDnbKNyXcLxVlosvs0reAzP+USf14bGMeja/YvbDXKLf3xw82GsxXWQuE5p8L22o0+L2/Dwl5/566lThPNanNlQW5ltgsfbavFgH/VpcWmC+Ks8QsQqyNnrfVrcBn6bSvhW3KPF/e+bILcYAACuEFdZi20ZJFGU0nTfhpWyythCz6LFNnqoqXsRQHwzOue1/szeE1XCbfPRi4/24u75tjsPvrrZ5Ra7HIYuj+KzO15uQ/5FE50WN4vEj9y1G8posbwhN/2CH7mLMgmm9VGPFtfr9TcfZzYkW4+UOh1feS0OLLxb2hRduoRYT2lDXW2F7fHeNgAAuJRcES2G0fCyWZgJ+SWE/M4HAABcVtDi6wdiDDOQjRQzuAAA4JKCFl9LSoO6wFZUhSEkDAAAVwu0GAAAAAAALQYAAAAAQIsBAAAAACxaDAAAAABg0WIAAAAAAIsWAwAAAADYvWhx85tdvPEfAAAAABbDvqLFI3+EGAAAAABgF+wtiaI0aDEAAAAALAW0GAAAAABgf1pMFgUAAAAALIc9vomifvSOJ+8AAAAAYP+QRAEAAAAAgBYDAAAAAKDFAAAAAAAWLQYAAAAAsHvT4qrQPGwHAAAAAIthTz/+jBIDAAAAwJLY4wvaAAAAAACWAloMAAAAAIAWAwAAAACgxQAAAAAAFi0GAAAAALBoMQAAAACAHdTiqtBKKd6nBgAAAABXmzHR4qrQ/CIdAAAAAFxlRiVR8EPNAAAAAHC1QYsBAAAAAMZpMVkUAAAAAHC1GfkmivrRO568AwAAAICrCUkUAAAAAABoMQAAAAAAWgwAAAAAYNFiAAAAAABr7Xq9Xq/XvVpcFZqH7QAAAADgSjOgxSgxAAAAAFwHRkSLAQAAAACuOmgxAAAAAABaDAAAAACAFgMAAAAA2FaL/z9AVLTT7r+GqQAAAABJRU5ErkJggg==" alt="" />

怎么样,很不错吧,有时候,一个新的技术可能你现在用不上,但知道了总会有好处,没准将来的某一天就会用到!人在学习知识时,没有没用的知识,只是你目前可能用不到它!

回到目录

WebApi系列~dynamic让你的省了很多临时类的更多相关文章

  1. 使用动态类型dynamic让你的省了很多临时类

    客户端与服务端的数据交互使用的数据格式是json格式,为了使客户端与服务端有类对应关系,进行序列化,所以总要定义一些类,使用动态类型dynamic可以不必要定义那么多类. 测试代码: using Sy ...

  2. WebApi系列~目录

    回到占占推荐博客索引 写了这个系列的文章不少了,也应该为大家写个目录了,最近很刮了很多SOA的风,很多企业都将自己的系统进行分割,通常是按模块进行拆分,为这个模块提供统一的接口提供业务服务,这不紧可以 ...

  3. 【WebApi系列】详解WebApi如何传递参数

    WebApi系列文章 [01]浅谈HTTP在WebApi开发中的运用 [02]聊聊WebApi体系结构 [03]详解WebApi参数的传递 [04]详解WebApi测试和PostMan [05]浅谈W ...

  4. VS Code WebApi系列——2、jwt结合数据库校验

    Knowledge should be shared free. 我们都知道WebApi最重要的作用就是为外部服务提供相应的数据接口和服务,所以一般WebApi都会连接后台数据库,那么最重要的一件事就 ...

  5. Http下的各种操作类.WebApi系列~通过HttpClient来调用Web Api接口

    1.WebApi系列~通过HttpClient来调用Web Api接口 http://www.cnblogs.com/lori/p/4045413.html HttpClient使用详解(java版本 ...

  6. 【WebApi系列】浅谈HTTP

    [01]浅谈HTTP在WebApi开发中的运用 [02]聊聊WebApi体系结构 [03]详解WebApi如何传递参数 [04]详解WebApi测试和PostMan [05]浅谈WebApi Core ...

  7. 【WebApi系列】浅谈HTTP在WebApi开发中的运用

    WebApi系列文章 [01]浅谈HTTP在WebApi开发中的运用 [02]聊聊WebApi体系结构 [03]详解WebApi参数的传递 [04]详解WebApi测试和PostMan [05]浅谈W ...

  8. WebApi系列知识总结

    WebApi系列知识 一.webApi项目搭建 1.新建WebApi项目 (1) (2) (3) (4) Areas – HelpPage – App_Start – HelpPageConfig.c ...

  9. ASP.NET Core 2.2 WebApi 系列【九】使用SignalR (作者:tenghao510 ) 学习及内容补充

    原文地址:  ASP.NET Core 2.2 WebApi 系列[九]使用SignalR 今天,看到了大牛的这篇博文,  发了一下评论, 我很惊喜, 没想到他很快就回复了我,  而且通过QQ帮助了S ...

随机推荐

  1. Java 第18章 多态

    18 章  --> 多态 继承: extends 抽象类 abstract (限制类的实例化) 抽象方法 public abstract void show(); //抽象方法只有方法的声明,没 ...

  2. Nessus导入Cookie进行Web应用安全扫描

    在不导入Cookie使用Nessus进行扫描的时候,扫描的结果是比较简单的,很多深层的问题无法被扫描出来. 需要我们手动导入Cookie,带着Cookie的状态扫描的结果会更详细更深入,以下是操作步骤 ...

  3. lvs DR模式下vip的端口无法telnet

    错误介绍: 在lvs配置文件中新添加一个vip  ,并添加一个virtual_server,添加两个realserver,配置文件都是复制,结果证明没问题,当时的效果是vip的端口telnet不了 过 ...

  4. Python生成器的经典程序

    import random def get_data(): """返回0到9之间的3个随机数""" return random.sample ...

  5. 【算法与数据结构】冒泡、插入、归并、堆排序、快速排序的Java实现代码

    详细过程就不表了,看代码吧 import java.util.Arrays; public class Sort { static int swapTimes=0; public static voi ...

  6. 转载:JProfiler远程监控LINUX上的Tomcat过程细讲

    来源于xuwanbest的博客   所谓"工欲善其事,必先利其器",好的工具确能起到事半工倍的作用.我用到的最多的就两个JConsole 和JProfiler .JConsole监 ...

  7. (完全背包 大数)Dollar Dayz (POJ 3181)

    http://poj.org/problem?id=3181 Description Farmer John goes to Dollar Days at The Cow Store and disc ...

  8. [转] How to Show Usual Winform as View in XAF

    How to Show Usual Winform as View in XAF http://www.codeproject.com/Tips/464188/How-to-Show-Usual-Wi ...

  9. Version history of VC++, MFC and ATL

    I have tried to assemble together information about the Visual C++ releases, the compiler and the fr ...

  10. Linux之yum安装软件