本章介绍邻接矩阵无向图。在"图的理论基础"中已经对图进行了理论介绍,这里就不再对图的概念进行重复说明了。和以往一样,本文会先给出C语言的实现;后续再分别给出C++和Java版本的实现。实现的语言虽不同,但是原理如出一辙,选择其中之一进行了解即可。若文章有错误或不足的地方,请不吝指出!

目录
1. 邻接矩阵无向图的介绍
2. 邻接矩阵无向图的代码说明
3. 邻接矩阵无向图的完整源码

转载请注明出处:http://www.cnblogs.com/skywang12345/

更多内容:数据结构与算法系列 目录

邻接矩阵无向图的介绍

邻接矩阵无向图是指通过邻接矩阵表示的无向图。

上面的图G1包含了"A,B,C,D,E,F,G"共7个顶点,而且包含了"(A,C),(A,D),(A,F),(B,C),(C,D),(E,G),(F,G)"共7条边。由于这是无向图,所以边(A,C)和边(C,A)是同一条边;这里列举边时,是按照字母先后顺序列举的。

上图右边的矩阵是G1在内存中的邻接矩阵示意图。A[i][j]=1表示第i个顶点与第j个顶点是邻接点,A[i][j]=0则表示它们不是邻接点;而A[i][j]表示的是第i行第j列的值;例如,A[1,2]=1,表示第1个顶点(即顶点B)和第2个顶点(C)是邻接点。

邻接矩阵无向图的代码说明

1. 基本定义

// 邻接矩阵
typedef struct _graph
{
char vexs[MAX]; // 顶点集合
int vexnum; // 顶点数
int edgnum; // 边数
int matrix[MAX][MAX]; // 邻接矩阵
}Graph, *PGraph;

Graph是邻接矩阵对应的结构体。
vexs用于保存顶点,vexnum是顶点数,edgnum是边数;matrix则是用于保存矩阵信息的二维数组。例如,matrix[i][j]=1,则表示"顶点i(即vexs[i])"和"顶点j(即vexs[j])"是邻接点;matrix[i][j]=0,则表示它们不是邻接点。

2. 创建矩阵

这里介绍提供了两个创建矩阵的方法。一个是用已知数据,另一个则需要用户手动输入数据

2.1 创建图(用已提供的矩阵)

/*
* 创建图(用已提供的矩阵)
*/
Graph* create_example_graph()
{
char vexs[] = {'A', 'B', 'C', 'D', 'E', 'F', 'G'};
char edges[][2] = {
{'A', 'C'},
{'A', 'D'},
{'A', 'F'},
{'B', 'C'},
{'C', 'D'},
{'E', 'G'},
{'F', 'G'}};
int vlen = LENGTH(vexs);
int elen = LENGTH(edges);
int i, p1, p2;
Graph* pG; // 输入"顶点数"和"边数"
if ((pG=(Graph*)malloc(sizeof(Graph))) == NULL )
return NULL;
memset(pG, 0, sizeof(Graph)); // 初始化"顶点数"和"边数"
pG->vexnum = vlen;
pG->edgnum = elen;
// 初始化"顶点"
for (i = 0; i < pG->vexnum; i++)
{
pG->vexs[i] = vexs[i];
} // 初始化"边"
for (i = 0; i < pG->edgnum; i++)
{
// 读取边的起始顶点和结束顶点
p1 = get_position(*pG, edges[i][0]);
p2 = get_position(*pG, edges[i][1]); pG->matrix[p1][p2] = 1;
pG->matrix[p2][p1] = 1;
} return pG;
}

createexamplegraph是的作用是创建一个邻接矩阵无向图。

注意:该方法创建的无向图,就是上面图G1。

2.2 创建图(自己输入)

/*
* 创建图(用已提供的矩阵)
*/
Graph* create_example_graph()
{
char vexs[] = {'A', 'B', 'C', 'D', 'E', 'F', 'G'};
char edges[][2] = {
{'A', 'C'},
{'A', 'D'},
{'A', 'F'},
{'B', 'C'},
{'C', 'D'},
{'E', 'G'},
{'F', 'G'}};
int vlen = LENGTH(vexs);
int elen = LENGTH(edges);
int i, p1, p2;
Graph* pG; // 输入"顶点数"和"边数"
if ((pG=(Graph*)malloc(sizeof(Graph))) == NULL )
return NULL;
memset(pG, 0, sizeof(Graph)); // 初始化"顶点数"和"边数"
pG->vexnum = vlen;
pG->edgnum = elen;
// 初始化"顶点"
for (i = 0; i < pG->vexnum; i++)
{
pG->vexs[i] = vexs[i];
} // 初始化"边"
for (i = 0; i < pG->edgnum; i++)
{
// 读取边的起始顶点和结束顶点
p1 = get_position(*pG, edges[i][0]);
p2 = get_position(*pG, edges[i][1]); pG->matrix[p1][p2] = 1;
pG->matrix[p2][p1] = 1;
} return pG;
}

create_graph()是读取用户的输入,将输入的数据转换成对应的无向图。

邻接矩阵无向图的完整源码

点击查看:源代码

邻接矩阵无向图(一)之 C语言详解的更多相关文章

  1. 邻接矩阵有向图(一)之 C语言详解

    本章介绍邻接矩阵有向图.在"图的理论基础"中已经对图进行了理论介绍,这里就不再对图的概念进行重复说明了.和以往一样,本文会先给出C语言的实现:后续再分别给出C++和Java版本的实 ...

  2. 邻接表无向图(一)之 C语言详解

    本章介绍邻接表无向图.在"图的理论基础"中已经对图进行了理论介绍,这里就不再对图的概念进行重复说明了.和以往一样,本文会先给出C语言的实现:后续再分别给出C++和Java版本的实现 ...

  3. 原来Github上的README.md文件这么有意思——Markdown语言详解(sublime text2 版本)

    一直想学习 Markdown 语言,想起以前读的一篇 赵凯强 的 博客 <原来Github上的README.md文件这么有意思——Markdown语言详解>,该篇博主 使用的是Mac系统, ...

  4. Java Web----EL(表达式语言)详解

     Java Web中的EL(表达式语言)详解 表达式语言(Expression Language)简称EL,它是JSP2.0中引入的一个新内容.通过EL可以简化在JSP开发中对对象的引用,从而规范页面 ...

  5. Floyd算法(一)之 C语言详解

    本章介绍弗洛伊德算法.和以往一样,本文会先对弗洛伊德算法的理论论知识进行介绍,然后给出C语言的实现.后续再分别给出C++和Java版本的实现. 目录 1. 弗洛伊德算法介绍 2. 弗洛伊德算法图解 3 ...

  6. Dijkstra算法(一)之 C语言详解

    本章介绍迪杰斯特拉算法.和以往一样,本文会先对迪杰斯特拉算法的理论论知识进行介绍,然后给出C语言的实现.后续再分别给出C++和Java版本的实现. 目录 1. 迪杰斯特拉算法介绍 2. 迪杰斯特拉算法 ...

  7. Prim算法(一)之 C语言详解

    本章介绍普里姆算法.和以往一样,本文会先对普里姆算法的理论论知识进行介绍,然后给出C语言的实现.后续再分别给出C++和Java版本的实现. 目录 1. 普里姆算法介绍 2. 普里姆算法图解 3. 普里 ...

  8. Kruskal算法(一)之 C语言详解

    本章介绍克鲁斯卡尔算法.和以往一样,本文会先对克鲁斯卡尔算法的理论论知识进行介绍,然后给出C语言的实现.后续再分别给出C++和Java版本的实现. 目录 1. 最小生成树 2. 克鲁斯卡尔算法介绍 3 ...

  9. 拓扑排序(一)之 C语言详解

    本章介绍图的拓扑排序.和以往一样,本文会先对拓扑排序的理论知识进行介绍,然后给出C语言的实现.后续再分别给出C++和Java版本的实现. 目录 1. 拓扑排序介绍 2. 拓扑排序的算法图解 3. 拓扑 ...

随机推荐

  1. 【转】linux shell实现随机数多种方法(date,random,uuid)

    在日常生活中,随机数实际上经常遇到,想丢骰子,抓阄,还有抽签.呵呵,非常简单就可以实现.那么在做程序设计,真的要通过自己程序设计出随机数那还真的不简单了.现在很多都是操作系统内核会提供相应的api,这 ...

  2. rabbitmq安装

    1.从源码安装最新的otperlang17,版本(otp_src_17.1.tar.gz): ./configure make make install 2.有可能要安装    和simplebean ...

  3. JS——树形导航菜单(html的ul嵌套,jQuery的css(),show(),hide(),index()等方法)

    必备工具:jquery库文件.我这里用的是1.4版本的. <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN&q ...

  4. 项目修改有感_主要是以js、Gridview为主

    1.弹出提示:confirm--弹出的窗口有确认.取消按钮 alert--弹出的窗口只有确认按钮 例:若需要在点击确认后执行其他操作(confirm) var toAlert = confirm(&q ...

  5. Spring声明式事务管理基于tx/aop命名空间

    目的:通过Spring AOP 实现Spring声明式事务管理; Spring支持编程式事务管理和声明式事务管理两种方式. 而声明式事务管理也有两种常用的方式,一种是基于tx/aop命名空间的xml配 ...

  6. yuecheng 笑话

    http://115.28.189.219:9898/stock/manager_articles/fundamentals 要闻 http://115.28.189.219:9898/stock/m ...

  7. python 实现简单排序

    今天偶得一本神奇的算法秘笈,据编辑说是一本easy and intresting 的书,所以我就开始翻开了. 书中作者用的是C语言,我最近正啃python 所以想着用python来解决作者的提问. 这 ...

  8. unity初始篇 选择游戏对象

    之前两任社长都在一直强调要写博客,一直没有写过,现在我已经踏上了博客的道路! 首先声明:本人才疏学浅,对unity认识不深,有错误的地方欢迎大家指出,在此谢过! 本文所说的选择对象,是指在游戏过程中动 ...

  9. Rubinius 2.0 发布,Ruby 虚拟机

    Rubinius 2.0 发布了,官方发行说明请看这里. Rubinius是一个运行Ruby程序的虚拟机,其带有Ruby的核心库. Rubinius的设计决定了其调试功能的强大,使得在运行时常规的Ru ...

  10. Xamarin开发IOS笔记:切换输入法时输入框被遮住

    在进行IOS开发的过程中,出现类似微信朋友圈的交互界面,当用户遇到感兴趣的内容可以进行评论.为了方便评论输入,当出现评论输入框的时候自动将评论输入框移动至键盘的上方,这样方便边输入边查看. 当用户隐藏 ...