数据范围很大,用米勒罗宾测试和Pollard_Rho法可以分解大数。

模板在代码中 O.O

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
using namespace std; __int64 pri[]= {,,,,,,,,,,};//用小素数表做随机种子避免第一类卡米歇尔数的误判
__int64 multi(__int64 a,__int64 b,__int64 n) //乘法快速幂
{
__int64 tmp=;
while(b)
{
if(b&)
{
tmp+=a;
if(tmp>=n) tmp-=n;
}
a<<=;
if(a>=n) a-=n;
b>>=;
}
return tmp;
}
__int64 multimod(__int64 a,__int64 m,__int64 n) //乘法快速幂
{
__int64 tmp=;
a%=n;
while(m)
{
if(m&) tmp=multi(tmp,a,n);
a=multi(a,a,n);
m>>=;
}
return tmp;
}
__int64 gcd(__int64 a, __int64 b) //迭代算法
{
while(b)
{
__int64 c=a%b;
a=b;
b=c;
}
return a;
}
bool Miller_Rabin(__int64 n) //大素数判断
{
if(n<)
return false;
if(n==)
return true;
if(!(n&))
return false;
__int64 k=,j,m,a;
m=n-;
while(!(m&))
{
m>>=;
k++;
}
for(int i=; i<; i++)
{
if(pri[i]>=n)
return true;
a=multimod(pri[i],m,n);
if(a==)
continue;
for(j=; j<k; j++)
{
if(a==n-)
break;
a=multi(a,a,n);
}
if(j==k)
return false;
}
return true;
}
__int64 pollard_rho(__int64 c,__int64 n) //查找因数
{
__int64 i,x,y,k,d;
i=;
x=y=rand()%n;
k=;
do
{
i++;
d=gcd(n+y-x,n);
if(d> && d<n)
return d;
if(i==k)
{
y=x;
k<<=;
}
x=(multi(x,x,n)+n-c)%n;
}
while(y!=x);
return n;
}
__int64 rho(__int64 n)
{
if(Miller_Rabin(n))
return n;
__int64 t=n;
while(t>=n)
t=pollard_rho(rand()%(n-)+,n);
__int64 a=rho(t);
__int64 b=rho(n/t);
return a<b? a:b;
} __int64 ans[],flag;
void rhoAll(__int64 n) //计算全部质因子
{
if(Miller_Rabin(n))
{
ans[flag++]=n;
return;
}
__int64 t=n;
while(t>=n)
t=pollard_rho(rand()%(n-)+,n);
rhoAll(t);
rhoAll(n/t);
return;
}
int main()
{
//freopen("in.txt","r",stdin);
int t;
__int64 n;
scanf("%d",&t);
while(t--)
{
flag=;
scanf("%I64d",&n);
if(Miller_Rabin(n))
printf("Prime\n");
else
{
//rhoAll(n);
printf("%I64d\n",rho(n));
}
/*for(int i=0;i<flag;i++) //输出全部质因子
if(i!=flag-1)
printf("%I64d ",ans[i]);
else
printf("%I64d\n",ans[i]);*/
}
return ;
}

POJ 1811 大素数判断的更多相关文章

  1. 【转】大素数判断和素因子分解【miller-rabin和Pollard_rho算法】

    集训队有人提到这个算法,就学习一下,如果用到可以直接贴模板,例题:POJ 1811 转自:http://www.cnblogs.com/kuangbin/archive/2012/08/19/2646 ...

  2. POJ 1811 大整数素数判断 Miller_Rabin

    #include <cstdio> #include <cstring> #include <cmath> #include <ctime> #incl ...

  3. 大素数判断和素因子分解(miller-rabin,Pollard_rho算法) 玄学快

    大数因数分解Pollard_rho 算法 复杂度o^(1/4) #include <iostream> #include <cstdio> #include <algor ...

  4. 大素数判断和素因子分解(miller-rabin,Pollard_rho算法)

    #include<stdio.h> #include<string.h> #include<stdlib.h> #include<time.h> #in ...

  5. HDU 4910 Problem about GCD 找规律+大素数判断+分解因子

    Problem about GCD Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

  6. poj 1811 随机素数和大数分解(模板)

    Sample Input 2 5 10 Sample Output Prime 2 模板学习: 判断是否是素数,数据很大,所以用miller,不是的话再用pollard rho分解 miller : ...

  7. 大素数判断(miller-Rabin测试)

    题目:PolandBall and Hypothesis A. PolandBall and Hypothesis time limit per test 2 seconds memory limit ...

  8. 数学#素数判定Miller_Rabin+大数因数分解Pollard_rho算法 POJ 1811&2429

    素数判定Miller_Rabin算法详解: http://blog.csdn.net/maxichu/article/details/45458569 大数因数分解Pollard_rho算法详解: h ...

  9. GCDLCM 【米勒_拉宾素数检验 (判断大素数)】

    GCDLCM 题目链接(点击) 题目描述 In FZU ACM team, BroterJ and Silchen are good friends, and they often play some ...

随机推荐

  1. Atitit  数据存储的分组聚合 groupby的实现attilax总结

    Atitit  数据存储的分组聚合 groupby的实现attilax总结 1. 聚合操作1 1.1. a.标量聚合 流聚合1 1.2. b.哈希聚合2 1.3. 所有的最优计划的选择都是基于现有统计 ...

  2. Atitit. Atiposter 发帖机 新特性 poster new feature v11  .docx

    Atitit. Atiposter 发帖机 新特性 poster new feature v11  .docx 1.1.  版本历史1 2. 1. 未来版本规划2 2.1. V12版本规划2 2.2. ...

  3. 大数据时代的IT架构设计

    大数据时代的IT架构设计(来自互联网.银行等领域的一线架构师先进经验分享) IT架构设计研究组 编著   ISBN 978-7-121-22605-2 2014年4月出版 定价:49.00元 208页 ...

  4. 大数据平台R语言web UI应用架构 设计与开发

    1. 系统拓扑图 在日常业务分析中,R是非常常用的分析工具,而当数据量较大时,用R语言需要需用更多的时间来完成训练模型,spark作为大规模数据处理框架,采用内存计算,可以短时间内完成大量的数据的处理 ...

  5. fir.im Weekly - 2016 开年技术干货分享

    开年上班,北上广的技术er 陆续重返"人间".看到别人已返工写代码,竟然有种慌慌的感觉(ง •̀_•́)ง 勤奋好学如你,fir.im weekly 送上最新一波技术分享供你 &q ...

  6. iOS-UICollectionView

    1--------------------------------------------------------------------------------------------------- ...

  7. iOS-数据持久化-SQlite3

    SQLite3简单介绍 1.ios中数据的存储方式 (1)Plist(NSArray\NSDictionary) (2)Preference(偏好设置\NSUserDefaults) (3)NSCod ...

  8. require.js笔记

    笔记参考来源:阮一峰  http://www.ruanyifeng.com/blog/2012/10/javascript_module.html   1. 浏览器端的模块只能采用“异步加载”方式 = ...

  9. ObjectOutputStream和ObjectInputStream

    官方解释: ObjectOutputStream 将 Java 对象的基本数据类型和图形写入 OutputStream.可以使用 ObjectInputStream 读取(重构)对象.通过使用流中的文 ...

  10. FileUpload实现文件上传(包含多文件)

    package com.hzml.serve; import java.io.File; import java.io.IOException; import java.io.PrintWriter; ...