We have a network of computers and a list of bi-directional connections. Each of these connections allows a file transfer from one computer to another. Is it possible to send a file from any computer on the network to any other?

Input Specification:

Each input file contains one test case. For each test case, the first line contains N (2<=N<=104), the total number of computers in a network. Each computer in the network is then represented by a positive integer between 1 and N. Then in the following lines, the input is given in the format:

I c1 c2

where I stands for inputting a connection between c1 and c2; or

C c1 c2

where C stands for checking if it is possible to transfer files between c1 and c2; or

S

where S stands for stopping this case.

Output Specification:

For each C case, print in one line the word "yes" or "no" if it is possible or impossible to transfer files between c1 and c2, respectively. At the end of each case, print in one line "The network is connected." if there is a path between any pair of computers; or "There are k components." wherek is the number of connected components in this network.

Sample Input 1:

5
C 3 2
I 3 2
C 1 5
I 4 5
I 2 4
C 3 5
S

Sample Output 1:

no
no
yes
There are 2 components.

Sample Input 2:

5
C 3 2
I 3 2
C 1 5
I 4 5
I 2 4
C 3 5
I 1 3
C 1 5
S

Sample Output 2:

no
no
yes
yes
The network is connected. 这题典型的是一道并查树的题。思路也非常简单,课件上也有现成。但是这道题直接用课本上的unite方法的话会超时。改进的办法有两个:1.unite时判断两个集合哪个集合的元素多,然后把元素少的那个集合并到大的里面,即直接把元素少的集合的根挂到另一个集合的根上。2.unite时,也是先判断哪个元素多,然后把元素少的那个集合的每一个元素都挂到元素多的那个集合的根上,这样做的话可以保证每个集合的高度只能是2,减少了find操作的耗时,但是会增加unite操作调整元素的时间。亲测用两种方法都能AC,下面给出两种方法的AC代码。
 #include<iostream>
#include"stdio.h"
using namespace std; int* a; void unite(int x1,int x2)
{
int root1 = x1-;
while (a[root1]>=)
root1=a[root1];
int root2 = x2-;
while (a[root2]>=)
root2=a[root2]; if ((a[root1]) <= (a[root2])) //root1的集合较大
{
a[root1] += a[root2];
a[root2] = root1;
}
else
{
a[root2] += a[root1];
a[root1] = root2;
}
} void judge(int x1,int x2)
{
int root1 = x1-;
int root2 = x2-;
while (a[root1]>=)
root1 = a[root1];
while (a[root2]>=)
root2 = a[root2];
if ( root1 == root2 )
printf("yes\n");
else
printf("no\n");
} int main()
{
int N=;
cin >> N;
a = new int [N]; for (int i=;i<N;i++)
{
a[i] = -;
} char operation='a';
int c1=,c2=; cin >> operation;
while (operation != 'S')
{
cin >> c1 >> c2;
if (operation == 'I')
{
unite(c1,c2);
}
else if (operation == 'C')
{
judge(c1,c2);
}
cin >> operation;
}
int component=;
for (int i=;i<N;i++)
if (a[i] < )
++component; if (component == )
cout << "The network is connected." << endl;
else
cout << "There are " << component << " components." << endl; return ;
}
 #include<iostream>
#include<vector>
#include"stdio.h"
using namespace std; struct PC
{
int data;
int parent;
vector<int> children;//若为根节点,则此容器放的是整个集合的元素值
};
PC* a; int find(int x) //查找x属于哪个集合,返回根节点的下标
{
vector<int> vec;
for (;a[x-].parent >=; x=a[x-].parent+);
return x;
} void unite(int x1,int x2)
{
int root1 = find(x1);
int root2 = find(x2);
if (-(a[root1-].parent) >= -(a[root2-].parent)) //root1的集合较大
{
a[root1-].parent += a[root2-].parent;
while (!a[root2-].children.empty())
{
a[root1-].children.push_back(a[root2-].children.back());
a[ a[root2-].children.back()- ].parent = root1-;
a[root2-].children.pop_back();
}
}
else
{
a[root2-].parent += a[root1-].parent;
while (!a[root1-].children.empty())
{
a[root2-].children.push_back(a[root1-].children.back());
a[ a[root1-].children.back()- ].parent = root2-;
a[root1-].children.pop_back();
}
}
} int main()
{
int N=;
scanf("%d",&N);
a = new PC[N];
for (int i=;i<N;i++)
{
a[i].data = i+;
a[i].parent = -;
a[i].children.push_back(i+);
} char operation='a',temp;
int c1=,c2=; scanf(" %c",&operation);
while (operation != 'S')
{
scanf("%d %d",&c1,&c2);
if (operation == 'C')
{
if ( find(c1) == find(c2) )
printf("yes\n");
else
printf("no\n");
}
if (operation == 'I')
{
unite(c1,c2);
}
scanf(" %c",&operation);
}
int component=;
for (int i=;i<N;i++)
{
if (a[i].parent < )
++component;
}
if (component == )
{
cout << "The network is connected." << endl;
}
else
{
cout << "There are " << component << " components." << endl;
}
return ;
}
												

PAT 5-8 File Transfer (25分)的更多相关文章

  1. PTA 05-树8 File Transfer (25分)

    题目地址 https://pta.patest.cn/pta/test/16/exam/4/question/670 5-8 File Transfer   (25分) We have a netwo ...

  2. 05-树8 File Transfer (25 分)

    We have a network of computers and a list of bi-directional connections. Each of these connections a ...

  3. pat04-树5. File Transfer (25)

    04-树5. File Transfer (25) 时间限制 150 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 作者 CHEN, Yue We have ...

  4. PAT 1009 Product of Polynomials (25分) 指数做数组下标,系数做值

    题目 This time, you are supposed to find A×B where A and B are two polynomials. Input Specification: E ...

  5. PAT A1122 Hamiltonian Cycle (25 分)——图遍历

    The "Hamilton cycle problem" is to find a simple cycle that contains every vertex in a gra ...

  6. PAT A1142 Maximal Clique (25 分)——图

    A clique is a subset of vertices of an undirected graph such that every two distinct vertices in the ...

  7. [PAT] 1142 Maximal Clique(25 分)

    1142 Maximal Clique(25 分) A clique is a subset of vertices of an undirected graph such that every tw ...

  8. PAT 甲级 1020 Tree Traversals (25分)(后序中序链表建树,求层序)***重点复习

    1020 Tree Traversals (25分)   Suppose that all the keys in a binary tree are distinct positive intege ...

  9. PAT 甲级 1146 Topological Order (25 分)(拓扑较简单,保存入度数和出度的节点即可)

    1146 Topological Order (25 分)   This is a problem given in the Graduate Entrance Exam in 2018: Which ...

随机推荐

  1. OPENGL半透明图像产生黑色光环

    OPENGL提供了多种多样的混合方法,我们很容易就能实现诸如 叠加.变亮等图像混合. 我们知道一般带透明度的图像是RGBA四个通道来存储,最常的glBlendFunc是 glBlendFunc(GL_ ...

  2. Java注释@interface的用法【转】

    Java用  @interface Annotation{ } 定义一个注解 @Annotation,一个注解是一个类.@Override,@Deprecated,@SuppressWarnings为 ...

  3. onthink 数据库连接配置

    define('UC_DB_DSN', 'mysql://root:@127.0.0.1:3306/app'); // 数据库连接,使用Model方式调用API必须配置此项 /* 数据库配置 */ ' ...

  4. VS2010部署Asp.net程序到本地IIS 7

        部署自己的网站到本地IIS 当你做一个网站,你想要在局域网访问的时候,你就可以部署到自己的IIS中然后他们通过 ip 去访问.下面就是怎么部署Asp.net 的网站怎么到本地IIS 上的. 1 ...

  5. spring beans

    所 有 使 用 XML 文 件 进 行 配 置 信 息 加 载 的 Spring IoC 容 器 , 包 括 BeanFactory 和ApplicationContext的所有XML相应实现,都使用 ...

  6. ubuntu下各种压缩包的解压命令

    .tar解包:tar xvf FileName.tar打包:tar cvf FileName.tar DirName(注:tar是打包,不是压缩!)-------------------------- ...

  7. VBA嘘嘘嘘(1)——将Excel数据填入到已存在的Word模板表格(实例应用)

    傻瓜可以写出机器读懂得代码,但写出让人能读懂的代码的是优秀程序员 Sub 填充() Application.ScreenUpdating = False 'ScreenUpdating 是控制你的ex ...

  8. win10 内测14352 加入了容器 和docker新功能,想体验的赶快升级

    原来只在server2016上有,现在加入到win0内测版了windows 容器提供了两种级别的隔离技术,分别是Windows Server container  和Hyper-V Container ...

  9. Raspberry Pi I2C驱动 (Python)

    本文参考 http://www.instructables.com/id/Raspberry-Pi-I2C-Python/all/?lang=zh 作者 AntMan232 In this instr ...

  10. Python中setuptools做什么用的?

    概括 setuptools是 Python Enterprise Application Kit(PEAK)的一个副项目,它 是一组Python的 distutilsde工具的增强工具(适用于 Pyt ...