CF1110E Magic Stones(构造题)
这场CF怎么这么多构造题……
题目大意:给定两个长度为 $n$ 的序列 $c$ 和 $t$。每次我们可以对 $c_i(2\le i<n)$ 进行一次操作,也就是把 $c_i$ 变成 $c_i'=c_{i-1}+c_{i+1}-c_i$。问 $c$ 能否在若干次操作后变成 $t$。
$1\le n\le 10^5,1\le c_i,t_i\le 2\times 10^9$。
很容易考虑差分。我们设 $d_i=c_i-c_{i-1},s_i=t_i-t_{i-1}(2\le i\le n)$。
那么对 $c_i$ 进行一次操作后,
$d_i$ 会变成 $d_i'=c_i'-c_{i-1}=c_{i-1}+c_{i+1}-c_i-c_{i+1}=c_{i+1}-c_i=d_{i+1}$,
$d_{i+1}$ 会变成 $d_{i+1}'=c_{i+1}-c_i'=c_{i+1}-(c_{i-1}+c_{i+1}-c_i)=c_i-c_{i-1}=d_i$。
实际上就是把 $d_i$ 和 $d_{i+1}$ 换了个位置。
很明显,仅仅通过交换相邻元素,就可以把原序列变成任意一种原元素的排列。
而两个序列完全相同,当且仅当它们的第一个元素相同且差分序列完全相同。
所以只需判断 $c_1=t_1$ 且 $d$ 和 $s$ 能通过重排变得完全一样即可。
后半部分如何判断?排个序后看看是否完全一样即可。
时间复杂度 $O(n\log n)$。
代码:
#include<bits/stdc++.h>
using namespace std;
const int maxn=;
#define FOR(i,a,b) for(int i=(a);i<=(b);i++)
#define ROF(i,a,b) for(int i=(a);i>=(b);i--)
#define MEM(x,v) memset(x,v,sizeof(x))
inline int read(){
char ch=getchar();int x=,f=;
while(ch<'' || ch>'') f|=ch=='-',ch=getchar();
while(ch>='' && ch<='') x=x*+ch-'',ch=getchar();
return f?-x:x;
}
int n,c[maxn],t[maxn],d1[maxn],d2[maxn];
int main(){
n=read();
FOR(i,,n) c[i]=read();
FOR(i,,n) t[i]=read();
if(c[]!=t[]) return puts("No"),; //先判首项相等
bool flag=true;
FOR(i,,n) d1[i]=c[i]-c[i-],d2[i]=t[i]-t[i-]; //两个差分序列
sort(d1+,d1+n+);sort(d2+,d2+n+); //排序
FOR(i,,n) if(d1[i]!=d2[i]){flag=false;break;} //比较
puts(flag?"Yes":"No");
}
CF1110E Magic Stones(构造题)的更多相关文章
- CF1110E Magic Stones 差分
传送门 将原数组差分一下,设\(d_i = c_{i+1} - c_i\) 考虑在\(i\)位置的一次操作会如何影响差分数组 \(d_{i+1}' = c_{i+1} - (c_{i+1} + c_{ ...
- [CF1110E]Magic Stones
题目大意:有一个长度为$n(n\leqslant10^5)$的数列$c$,问是否可以经过若干次变换变成数列$t$,一次变换为$c'_i=c_{i+1}+c_{i-1}-c_i$ 题解:思考一次变换的本 ...
- 【CF1110E】 Magic Stones - 差分
题面 Grigory has n n magic stones, conveniently numbered from \(1\) to \(n\). The charge of the \(i\)- ...
- E. Magic Stones CF 思维题
E. Magic Stones time limit per test 1 second memory limit per test 256 megabytes input standard inpu ...
- cf251.2.C (构造题的技巧)
C. Devu and Partitioning of the Array time limit per test 1 second memory limit per test 256 megabyt ...
- hdu4671 Backup Plan ——构造题
link:http://acm.hdu.edu.cn/showproblem.php?pid=4671 其实是不难的那种构造题,先排第一列,第二列从后往前选. #include <iostrea ...
- Educational Codeforces Round 7 D. Optimal Number Permutation 构造题
D. Optimal Number Permutation 题目连接: http://www.codeforces.com/contest/622/problem/D Description You ...
- Codeforces 482 - Diverse Permutation 构造题
这是一道蛮基础的构造题. - k +(k - 1) -(k - 2) 1 + k , 1 , k , 2, ....... ...
- BZOJ 3097: Hash Killer I【构造题,思维题】
3097: Hash Killer I Time Limit: 5 Sec Memory Limit: 128 MBSec Special JudgeSubmit: 963 Solved: 36 ...
随机推荐
- R语言入门 :基本数据结构
1.向量 向量是R语言中最基本的数据类型,在R语言中没有单独的变量. (1) 创建向量 R语言中可以用 = 或者 <- 来赋值. 向量名 <- 向量 或 向量名 = 向量 向量的创建方 ...
- PI monitor error process-RESOURCE_NOT_FOUND-转
事务:sxi_monitor 状态:system error 类型:Request Message Mapping 错误简要:RESOURCE_NOT_FOUND 错误详细信息: <?xml v ...
- Django Rest Framework源码剖析(四)-----API版本
一.简介 在我们给外部提供的API中,可会存在多个版本,不同的版本可能对应的功能不同,所以这时候版本使用就显得尤为重要,django rest framework也为我们提供了多种版本使用方法. 二. ...
- 20155331《网路对抗》Exp8 WEB基础实践
20155331<网路对抗>Exp8 WEB基础实践 基础问题回答 什么是表单 表单在网页中主要负责数据采集功能.一个表单有三个基本组成部分: 表单标签,这里面包含了处理表单数据所用CGI ...
- 28 个 C/C++ 开源 JSON 程序库性能及标准符合程度评测
28 个 C/C++ 开源 JSON 程序库性能及标准符合程度评测 坊间有非常多的 C/C++ JSON 库,怎么选择是一个难题. [nativejson-benchmark](https://git ...
- Kubernetes学习之路(二十二)之Pod资源调度
目录 Pod资源调度 1.常用的预选策略 2.优选函数 3.节点亲和调度 3.1.节点硬亲和性 3.2.节点软亲和性 4.Pod资源亲和调度 4.1.Pod硬亲和度 4.2.Pod软亲和度 4.3.P ...
- libgdx学习记录15——音乐Music播放
背景音乐是游戏中必备的元素,好的背景音乐能为游戏加分不少,使人更容易融入到游戏的氛围中去. Music类中主要有以下函数: play()播放 stop()停止 pause()暂停 setVolume( ...
- TensorFlow 实现线性回归
1.生成高斯分布的随机数 导入numpy模块,通过numpy模块内的方法生成一组在方程 y = 2 * x + 3 周围小幅波动的随机坐标.代码如下: import numpy as np impor ...
- aiohttp基本及进阶使用
客户端使用 发起请求 让我们从导入aiohttp模块开始: import aiohttp 好啦,我们来尝试获取一个web页面.比如我们来获取下GitHub的时间轴. async with aiohtt ...
- unity物理检测的几种方式
(由于本人大多做2d游戏,因此以下以2d为主介绍,但是具体和3d相差不大) 在unity中有很多不同的物理检测方式,但是大致可以分为以下几种: 1.Physics2d检测系列 Physics2d.Li ...