CF1110E Magic Stones(构造题)
这场CF怎么这么多构造题……
题目大意:给定两个长度为 $n$ 的序列 $c$ 和 $t$。每次我们可以对 $c_i(2\le i<n)$ 进行一次操作,也就是把 $c_i$ 变成 $c_i'=c_{i-1}+c_{i+1}-c_i$。问 $c$ 能否在若干次操作后变成 $t$。
$1\le n\le 10^5,1\le c_i,t_i\le 2\times 10^9$。
很容易考虑差分。我们设 $d_i=c_i-c_{i-1},s_i=t_i-t_{i-1}(2\le i\le n)$。
那么对 $c_i$ 进行一次操作后,
$d_i$ 会变成 $d_i'=c_i'-c_{i-1}=c_{i-1}+c_{i+1}-c_i-c_{i+1}=c_{i+1}-c_i=d_{i+1}$,
$d_{i+1}$ 会变成 $d_{i+1}'=c_{i+1}-c_i'=c_{i+1}-(c_{i-1}+c_{i+1}-c_i)=c_i-c_{i-1}=d_i$。
实际上就是把 $d_i$ 和 $d_{i+1}$ 换了个位置。
很明显,仅仅通过交换相邻元素,就可以把原序列变成任意一种原元素的排列。
而两个序列完全相同,当且仅当它们的第一个元素相同且差分序列完全相同。
所以只需判断 $c_1=t_1$ 且 $d$ 和 $s$ 能通过重排变得完全一样即可。
后半部分如何判断?排个序后看看是否完全一样即可。
时间复杂度 $O(n\log n)$。
代码:
#include<bits/stdc++.h>
using namespace std;
const int maxn=;
#define FOR(i,a,b) for(int i=(a);i<=(b);i++)
#define ROF(i,a,b) for(int i=(a);i>=(b);i--)
#define MEM(x,v) memset(x,v,sizeof(x))
inline int read(){
char ch=getchar();int x=,f=;
while(ch<'' || ch>'') f|=ch=='-',ch=getchar();
while(ch>='' && ch<='') x=x*+ch-'',ch=getchar();
return f?-x:x;
}
int n,c[maxn],t[maxn],d1[maxn],d2[maxn];
int main(){
n=read();
FOR(i,,n) c[i]=read();
FOR(i,,n) t[i]=read();
if(c[]!=t[]) return puts("No"),; //先判首项相等
bool flag=true;
FOR(i,,n) d1[i]=c[i]-c[i-],d2[i]=t[i]-t[i-]; //两个差分序列
sort(d1+,d1+n+);sort(d2+,d2+n+); //排序
FOR(i,,n) if(d1[i]!=d2[i]){flag=false;break;} //比较
puts(flag?"Yes":"No");
}
CF1110E Magic Stones(构造题)的更多相关文章
- CF1110E Magic Stones 差分
传送门 将原数组差分一下,设\(d_i = c_{i+1} - c_i\) 考虑在\(i\)位置的一次操作会如何影响差分数组 \(d_{i+1}' = c_{i+1} - (c_{i+1} + c_{ ...
- [CF1110E]Magic Stones
题目大意:有一个长度为$n(n\leqslant10^5)$的数列$c$,问是否可以经过若干次变换变成数列$t$,一次变换为$c'_i=c_{i+1}+c_{i-1}-c_i$ 题解:思考一次变换的本 ...
- 【CF1110E】 Magic Stones - 差分
题面 Grigory has n n magic stones, conveniently numbered from \(1\) to \(n\). The charge of the \(i\)- ...
- E. Magic Stones CF 思维题
E. Magic Stones time limit per test 1 second memory limit per test 256 megabytes input standard inpu ...
- cf251.2.C (构造题的技巧)
C. Devu and Partitioning of the Array time limit per test 1 second memory limit per test 256 megabyt ...
- hdu4671 Backup Plan ——构造题
link:http://acm.hdu.edu.cn/showproblem.php?pid=4671 其实是不难的那种构造题,先排第一列,第二列从后往前选. #include <iostrea ...
- Educational Codeforces Round 7 D. Optimal Number Permutation 构造题
D. Optimal Number Permutation 题目连接: http://www.codeforces.com/contest/622/problem/D Description You ...
- Codeforces 482 - Diverse Permutation 构造题
这是一道蛮基础的构造题. - k +(k - 1) -(k - 2) 1 + k , 1 , k , 2, ....... ...
- BZOJ 3097: Hash Killer I【构造题,思维题】
3097: Hash Killer I Time Limit: 5 Sec Memory Limit: 128 MBSec Special JudgeSubmit: 963 Solved: 36 ...
随机推荐
- mysql图形化界面MySQL_Workbench
1,下载最新版本的MySQL Workbench,下载地址: http://www.mysql.com/downloads/workbench/ 2,安装Workbench的依赖组件两个 http ...
- Cloud Foundry 组件
原文:https://blog.csdn.net/little_crab_0924/article/details/78022391 Cloud Foundry 组件概述 Cloud Foundry ...
- 大数据入门第二十三天——SparkSQL(二)结合hive
一.SparkSQL结合hive 1.首先通过官网查看与hive匹配的版本 这里可以看到是1.2.1 2.与hive结合 spark可以通过读取hive的元数据来兼容hive,读取hive的表数据,然 ...
- 2017-2018 Exp7 网络欺诈技术防范 20155214
目录 Exp7 网络欺诈技术防范 实验内容 信息收集 知识点 Exp7 网络欺诈技术防范 实验内容 实验环境 主机 Kali 靶机 Windows 10 实验工具 平台 Metaploit 信息收集 ...
- 2017-2018-2 20155224『网络对抗技术』Exp4:恶意代码分析
原理与实践说明 实践目标 监控你自己系统的运行状态,看有没有可疑的程序在运行. 分析一个恶意软件,就分析Exp2或Exp3中生成后门软件:分析工具尽量使用原生指令或sysinternals,systr ...
- 20155311 Exp3 免杀原理与实践
20155311 Exp3 免杀原理与实践 •免杀 一般是对恶意软件做处理,让它不被杀毒软件所检测.也是渗透测试中需要使用到的技术. [基础问题回答] (1)杀软是如何检测出恶意代码的? 1.通过特征 ...
- JavaEE笔记(十四)
#SSH配置文件整合笔记实例 spring-BaseBean.xml <?xml version="1.0" encoding="UTF-8"?> ...
- [51Nod1238]最小公倍数之和 V3[杜教筛]
题意 给定 \(n\) ,求 \(\sum_{i=1}^n \sum_{j=1}^n lcm(i,j)\). \(n\leq 10^{10}\) 分析 推式子 \[\begin{aligned} an ...
- tomcat-内存溢出java.lang.OutOfMemoryErrory:PermGen space解决方法
如果是PermGen space方法区内存溢出,可尝试加大MaxPermSize,如果是heap space 堆内存移除,可尝试修改Xmx 正常解决方法: 在注释下的第一行添加: JAVA_OPTS= ...
- 联想拯救者15-isk安装固态硬盘与系统迁移教程
一.固态选择 首先知道拯救者15-ISK是m.2接口2280尺寸,支持PCIE协议NVMe接口标准.我加装的固态是HP EX900系列250G M.2 NVMe固态硬盘. 二.开盖安装 1.拯救者15 ...