【刷题】LOJ 6006 「网络流 24 题」试题库
题目描述
假设一个试题库中有 \(n\) 道试题。每道试题都标明了所属类别。同一道题可能有多个类别属性。现要从题库中抽取 \(m\) 道题组成试卷。并要求试卷包含指定类型的试题。试设计一个满足要求的组卷算法。
输入格式
第 \(1\) 行有 \(2\) 个正整数 \(k\) 和 \(n\) 。\(k\) 表示题库中试题类型总数,\(n\) 表示题库中试题总数。第 \(2\) 行有 \(k\) 个正整数,第 \(i\) 个正整数表示要选出的类型 \(i\) 的题数。这 \(k\) 个数相加就是要选出的总题数 \(m\) 。
接下来的 \(n\) 行给出了题库中每个试题的类型信息。每行的第 \(1\) 个正整数 \(p\) 表明该题可以属于 \(p\) 类,接着的 \(p\) 个数是该题所属的类型号。
输出格式
第 \(i\) 行输出 i:
后接类型 \(i\) 的题号。如果有多个满足要求的方案,只要输出一个方案。如果问题无解,则输出 No Solution!
。
样例
样例输入
3 15
3 3 4
2 1 2
1 3
1 3
1 3
1 3
3 1 2 3
2 2 3
2 1 3
1 2
1 2
2 1 2
2 1 3
2 1 2
1 1
3 1 2 3
样例输出
1: 1 6 8
2: 7 9 10
3: 2 3 4 5
数据范围与提示
\(2 \leq k \leq 20, k \leq n \leq 1000\)
题解
这和圆桌聚餐问题毫无区别啊
试题和属性分别和源点和汇点相连,属性容量为各自的需要,试题的容量只能为 \(1\)
试题和自己的属性相连,容量为 \(1\)
跑最大流
#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
const int MAXN=2000+10,MAXM=MAXN*MAXN+10,inf=0x3f3f3f3f;
int n,k,e=1,beg[MAXN],cur[MAXN],level[MAXN],vis[MAXN],clk,s,t,nex[MAXM<<1],to[MAXM<<1],cap[MAXM<<1],all;
std::queue<int> q;
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char ch='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(ch!='\0')putchar(ch);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline void insert(int x,int y,int z)
{
to[++e]=y;
nex[e]=beg[x];
beg[x]=e;
cap[e]=z;
to[++e]=x;
nex[e]=beg[y];
beg[y]=e;
cap[e]=0;
}
inline bool bfs()
{
memset(level,0,sizeof(level));
level[s]=1;
q.push(s);
while(!q.empty())
{
int x=q.front();
q.pop();
for(register int i=beg[x];i;i=nex[i])
if(cap[i]&&!level[to[i]])level[to[i]]=level[x]+1,q.push(to[i]);
}
return level[t];
}
inline int dfs(int x,int maxflow)
{
if(x==t||!maxflow)return maxflow;
vis[x]=clk;
int res=0;
for(register int &i=cur[x];i;i=nex[i])
if((vis[to[i]]^vis[x])&&cap[i]&&level[to[i]]==level[x]+1)
{
int f=dfs(to[i],min(maxflow,cap[i]));
cap[i]-=f;
cap[i^1]+=f;
res+=f;
maxflow-=f;
if(!maxflow)break;
}
vis[x]=0;
return res;
}
inline int Dinic()
{
int res=0;
while(bfs())clk++,memcpy(cur,beg,sizeof(cur)),res+=dfs(s,inf);
return res;
}
int main()
{
read(k);read(n);
s=k+n+1,t=s+1;
for(register int i=1,x;i<=k;++i)read(x),insert(s,i,x),all+=x;
for(register int i=1;i<=n;++i)
{
insert(i+k,t,1);
int m;read(m);
for(register int j=1,x;j<=m;++j)read(x),insert(x,i+k,1);
}
if(Dinic()!=all)puts("No Solution!");
else
for(register int x=1;x<=k;++x)
{
printf("%d:",x);
for(register int i=beg[x];i;i=nex[i])
if(!cap[i]&&(i&1^1))printf(" %d",to[i]-k);
puts("");
}
return 0;
}
【刷题】LOJ 6006 「网络流 24 题」试题库的更多相关文章
- 【刷题】LOJ 6227 「网络流 24 题」最长k可重线段集问题
题目描述 给定平面 \(\text{xoy}\) 上 \(n\) 个开线段组成的集合 \(\text{I}\) ,和一个正整数 \(k\) ,试设计一个算法. 从开线段集合 \(\text{I}\) ...
- Libre 6006 「网络流 24 题」试题库 / Luogu 2763 试题库问题 (网络流,最大流)
Libre 6006 「网络流 24 题」试题库 / Luogu 2763 试题库问题 (网络流,最大流) Description 问题描述: 假设一个试题库中有n道试题.每道试题都标明了所属类别.同 ...
- [luogu_P1251][LOJ#6008]「网络流 24 题」餐巾计划
[luogu_P1251][LOJ#6008]「网络流 24 题」餐巾计划 试题描述 一个餐厅在相继的 \(N\) 天里,第 \(i\) 天需要 \(R_i\) 块餐巾 \((i=l,2,-,N)\) ...
- [LOJ#6002]「网络流 24 题」最小路径覆盖
[LOJ#6002]「网络流 24 题」最小路径覆盖 试题描述 给定有向图 G=(V,E).设 P 是 G 的一个简单路(顶点不相交)的集合.如果 V 中每个顶点恰好在 P 的一条路上,则称 P 是 ...
- liberOJ#6006. 「网络流 24 题」试题库 网络流, 输出方案
#6006. 「网络流 24 题」试题库 题目描述 假设一个试题库中有 n nn 道试题.每道试题都标明了所属类别.同一道题可能有多个类别属性.现要从题库中抽取 m mm 道题组成试卷.并要求 ...
- loj #6014. 「网络流 24 题」最长 k 可重区间集
#6014. 「网络流 24 题」最长 k 可重区间集 题目描述 给定实直线 L LL 上 n nn 个开区间组成的集合 I II,和一个正整数 k kk,试设计一个算法,从开区间集合 I II 中选 ...
- loj #6013. 「网络流 24 题」负载平衡
#6013. 「网络流 24 题」负载平衡 题目描述 G 公司有 n nn 个沿铁路运输线环形排列的仓库,每个仓库存储的货物数量不等.如何用最少搬运量可以使 n nn 个仓库的库存数量相同.搬运货物时 ...
- loj #6122. 「网络流 24 题」航空路线问题
#6122. 「网络流 24 题」航空路线问题 题目描述 给定一张航空图,图中顶点代表城市,边代表两个城市间的直通航线.现要求找出一条满足下述限制条件的且途经城市最多的旅行路线. 从最西端城市出发,单 ...
- loj #6121. 「网络流 24 题」孤岛营救问题
#6121. 「网络流 24 题」孤岛营救问题 题目描述 1944 年,特种兵麦克接到国防部的命令,要求立即赶赴太平洋上的一个孤岛,营救被敌军俘虏的大兵瑞恩.瑞恩被关押在一个迷宫里,迷宫地形复杂, ...
随机推荐
- Linux下离线安装Docker
Linux下离线安装Docker 一.基础环境 1.操作系统:CentOS 7.3 2.Docker版本:18.06.1 官方下载地址(打不开可能需要***) 3.百度云Docker 18.06.1地 ...
- 【转】python直接运行tcl脚本
python中调用tcl是通过加载TkInter来实现的. from Tkinter import Tcl tcl = Tcl() tcl.eval('source tu.tcl') tcl.eval ...
- jquery方法简单记录
append() - 在被选元素的结尾插入内容 prepend() - 在被选元素的开头插入内容 after() - 在被选元素之后插入内容 before() - 在被选元素之前插入内容 firs ...
- Php的常见错误及错误分析
我们在进行开发工作的时候,难免会遇到PHP的报错,解决这些错误,也是作为PHPer必须掌握的一种技能. 如果程序发生错误,我们能大致的分析出出现错误的原因,对于我们解决这戏错误会有很大的帮助. Not ...
- 使用MySQL命令行修改密码
格式:mysqladmin -u用户名 -p旧密码 password 新密码 1.给root加个密码ab12.首先在DOS下进入目录mysql\bin,然后键入以下命令 mysqladmin - ...
- C# Test Encryption and Decryption
public MainWindow() { InitializeComponent(); Title = getUUID(); string s= httpGet("http://220.1 ...
- P4385 [COCI2009]Dvapravca
首先特判掉蓝点数量\(<2\)的情况.没有蓝点答案就是\(n\),有一个蓝点可以枚举一个红点,选择过这个蓝点和红点的一条线和在无穷远处的平行线(即这条线对应的两个半平面). 这里认为过一个点是与 ...
- springboot项目生成jar包(带静态资源)方法
[Maven]在pom.xml文件中使用resources插件的小作用 不过war包比较实用,毕竟独立的tomcat比较好控制
- 9、Dockerfile实战-Nginx
上一节我们详解Dockerfile之后,现在来进行实战.我们通过docker build来进行镜像制作. build有如下选项: [root@localhost ~a]# docker build - ...
- Verilog HDL数组(存储器)操作
本文从本人的163博客搬迁至此. 引用了http://blog.sina.com.cn/s/blog_9424755f0101rhrh.html Verilog HDL中常采用数组方式来对存储器进行建 ...