【BZOJ1083】[SCOI2005]繁忙的都市(最小生成树)

题面

BZOJ

洛谷

题解

模板题。

#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
#define MAX 350
#define MAXL 10100
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
struct edge{int u,v,w;}e[MAXL];
bool operator<(edge a,edge b){return a.w<b.w;}
int n,m,ans,f[MAX];
int getf(int x){return x==f[x]?x:f[x]=getf(f[x]);}
int main()
{
n=read();m=read();
for(int i=1;i<=m;++i)e[i].u=read(),e[i].v=read(),e[i].w=read();
sort(&e[1],&e[m+1]);
for(int i=1;i<=n;++i)f[i]=i;
for(int i=1;i<=m;++i)
{
int u=getf(e[i].u),v=getf(e[i].v);
if(u==v)continue;ans=e[i].w;
f[u]=v;
}
printf("%d %d\n",n-1,ans);
return 0;
}

【BZOJ1083】[SCOI2005]繁忙的都市(最小生成树)的更多相关文章

  1. [BZOJ1083][SCOI2005]繁忙的都市 最小生成树

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1083 由kruskal算法原理可知,我们对一张无向图做普通的最小生成树,连上的最后一条边就 ...

  2. [日常摸鱼]bzoj1083[SCOI2005]繁忙的都市-最小生成树

    我也不知道为什么我要来写这个-怕是写水题写上瘾了(bu #include<cstdio> #include<algorithm> #define rep(i,n) for(re ...

  3. Bzoj 1083: [SCOI2005]繁忙的都市 (最小生成树)

    Bzoj 1083: [SCOI2005]繁忙的都市 题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1083 此题是最小瓶颈生成树的裸题. ...

  4. 【最小瓶颈生成树】【最小生成树】【kruscal】bzoj1083 [SCOI2005]繁忙的都市

    本意是求最小瓶颈生成树,但是我们可以证明:最小生成树也是最小瓶颈生成树(其实我不会).数据范围很小,暴力kruscal即可. #include<cstdio> #include<al ...

  5. BZOJ1083: [SCOI2005]繁忙的都市

    水题之王SP…这题就裸的最小生成树 /************************************************************** Problem: 1083 User ...

  6. [BZOJ1083] [SCOI2005] 繁忙的都市 (kruskal)

    Description 城市C是一个非常繁忙的大都市,城市中的道路十分的拥挤,于是市长决定对其中的道路进行改造.城市C的道路是这样分布的:城市中有n个交叉路口,有些交叉路口之间有道路相连,两个交叉路口 ...

  7. bzoj 1083: [SCOI2005]繁忙的都市 (最小生成树)

    链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1083 思路:连接所有点,肯定最少是需要n-1条边的,也就是写个最小生成树,记得保存下最大的权 ...

  8. bzoj1083: [SCOI2005]繁忙的都市 瓶颈生成树

    https://www.lydsy.com/JudgeOnline/problem.php?id=1083 题意:给你一个图,求生成树最大边权最小值 就是求瓶颈生成树(生成树中最大边权最小),最小生成 ...

  9. [SCOI2005]繁忙的都市 (最小生成树)

    题目链接 Solution 裸的最小生成树. Code #include<bits/stdc++.h> using namespace std; const int maxn=500008 ...

随机推荐

  1. Elasticsearch 简介

    1. 背景 Elasticsearch 在公司的使用越来越广,很多同事之前并没有接触过 Elasticsearch,所以,最近在公司准备了一次关于 Elasticsearch 的分享,整理成此文.此文 ...

  2. ISCSI工作流程target和initiator

    随着企业级的数据呈指数增长,传统的集中式存储方案已无法满足其存储要求,因而存储区域网(storage area network,SAN)技术被广泛应用,但其存在距离短.价格贵和构建复杂等不足.基于iS ...

  3. excel的宏与VBA入门(一)——基础概念

    一.概述 "记录宏"其实就是将工作的一系列操作结果录制下来,并命名存储(相当于VB中一个子程序). 宏其实就是VBA写的,但是可以通过录制的方法制作宏,做好的宏你可以查看相应的VB ...

  4. 20155217《网络对抗》Exp05 MSF基础应用

    20155217<网络对抗>Exp05 MSF基础应用 实践内容 本实践目标是掌握metasploit的基本应用方式,重点常用的三种攻击方式的思路.具体需要完成: 一个主动攻击实践,如ms ...

  5. cli 开发记录

    最近要开发一个 cli,主要作用是方便同事生成前端项目,做了一天半,基本参考的是 vue-cli. cli 要实现的功能: 用 cnpm install zt-cli -g 全局安装,这个就要将你做的 ...

  6. mfc CIPAddressCtrl控件

    知识点: CIPAddressCtrl 属性 CIPAddressCtrl 成员函数 成员函数代码测试 一.CIPAddressCtrl Class Members IsBlank Determine ...

  7. P2371 [国家集训队]墨墨的等式

    膜意义下最短路. 把最小的\(a\)抠出来,作为模数\(mod\),然后建点编号为\(0\)到\(mod-1\),对每个数\(a\)连边\((i,(a+i)\mod mod)\)点\(i\)的最短路就 ...

  8. Django中的cookie和session

    前言 HTTP协议 是短连接.且状态的,所以在客户端向服务端发起请求后,服务端在响应头 加入cokie响应给浏览器,以此记录客户端状态: cook是来自服务端,保存在浏览器的键值对,主要应用于用户登录 ...

  9. 《Effective Java》学习笔记 —— 枚举、注解与方法

    Java的枚举.注解与方法... 第30条 用枚举代替int常量 第31条 用实例域代替序数 可以考虑定义一个final int 代替枚举中的 ordinal() 方法. 第32条 用EnumSet代 ...

  10. 「功能笔记」Spacemacs+Evil备忘录

    设置代理 (setq url-gateway-method 'socks) (setq socks-server '("Default server" "127.0.0. ...