spark DataFrame 常见操作
spark dataframe派生于RDD类,但是提供了非常强大的数据操作功能。当然主要对类SQL的支持。 在实际工作中会遇到这样的情况,主要是会进行两个数据集的筛选、合并,重新入库。 首先加载数据集,然后在提取数据集的前几行过程中,才找到limit的函数。 而合并就用到union函数,重新入库,就是registerTemple注册成表,再进行写入到HIVE中。 不得不赞叹dataframe的强大。 具体示例:为了得到样本均衡的训练集,需要对两个数据集中各取相同的训练样本数目来组成,因此用到了这个功能。
scala> val fes = hiveContext.sql(sqlss)
fes: org.apache.spark.sql.DataFrame = [caller_num: string, is_sr: int, call_count: int, avg_talk_time: double, max_talk_time: int, min_talk_time: int, called_num_count: int, called_lsd: double, null_called_count: int] scala> val fcount = fes.count()
fcount: Long = 4371029 scala> val zcfea = hiveContext.sql(sqls2)
zcfea: org.apache.spark.sql.DataFrame = [caller_num: string, is_sr: int, call_count: int, avg_talk_time: double, max_talk_time: int, min_talk_time: int, called_num_count: int, called_lsd: double, null_called_count: int] scala> val zcount = zcfea.count()
zcount: Long = 14208117 scala> val f01 = fes.limit(25000)
f01: org.apache.spark.sql.DataFrame = [caller_num: string, is_sr: int, call_count: int, avg_talk_time: double, max_talk_time: int, min_talk_time: int, called_num_count: int, called_lsd: double, null_called_count: int] scala> val f02 = zcfea.limit(25000)
f02: org.apache.spark.sql.DataFrame = [caller_num: string, is_sr: int, call_count: int, avg_talk_time: double, max_talk_time: int, min_talk_time: int, called_num_count: int, called_lsd: double, null_called_count: int] scala> val ff=f01.unionAll(f02)
ff: org.apache.spark.sql.DataFrame = [caller_num: string, is_sr: int, call_count: int, avg_talk_time: double, max_talk_time: int, min_talk_time: int, called_num_count: int, called_lsd: double, null_called_count: int] scala> ff.registerTempTable("ftable01") scala> hiveContext.sql("create table shtrainfeature as select * from ftable01")
res1: org.apache.spark.sql.DataFrame = [] 最后附上dataframe的一些操作及用法: DataFrame 的函数
Action 操作
1、 collect() ,返回值是一个数组,返回dataframe集合所有的行
2、 collectAsList() 返回值是一个java类型的数组,返回dataframe集合所有的行
3、 count() 返回一个number类型的,返回dataframe集合的行数
4、 describe(cols: String*) 返回一个通过数学计算的类表值(count, mean, stddev, min, and max),这个可以传多个参数,中间用逗号分隔,如果有字段为空,那么不参与运算,只这对数值类型的字段。例如df.describe("age", "height").show()
5、 first() 返回第一行 ,类型是row类型
6、 head() 返回第一行 ,类型是row类型
7、 head(n:Int)返回n行 ,类型是row 类型
8、 show()返回dataframe集合的值 默认是20行,返回类型是unit
9、 show(n:Int)返回n行,,返回值类型是unit
10、 table(n:Int) 返回n行 ,类型是row 类型
dataframe的基本操作
1、 cache()同步数据的内存
2、 columns 返回一个string类型的数组,返回值是所有列的名字
3、 dtypes返回一个string类型的二维数组,返回值是所有列的名字以及类型
4、 explan()打印执行计划 物理的
5、 explain(n:Boolean) 输入值为 false 或者true ,返回值是unit 默认是false ,如果输入true 将会打印 逻辑的和物理的
6、 isLocal 返回值是Boolean类型,如果允许模式是local返回true 否则返回false
7、 persist(newlevel:StorageLevel) 返回一个dataframe.this.type 输入存储模型类型
8、 printSchema() 打印出字段名称和类型 按照树状结构来打印
9、 registerTempTable(tablename:String) 返回Unit ,将df的对象只放在一张表里面,这个表随着对象的删除而删除了
10、 schema 返回structType 类型,将字段名称和类型按照结构体类型返回
11、 toDF()返回一个新的dataframe类型的
12、 toDF(colnames:String*)将参数中的几个字段返回一个新的dataframe类型的,
13、 unpersist() 返回dataframe.this.type 类型,去除模式中的数据
14、 unpersist(blocking:Boolean)返回dataframe.this.type类型 true 和unpersist是一样的作用false 是去除RDD 集成查询:
1、 agg(expers:column*) 返回dataframe类型 ,同数学计算求值
df.agg(max("age"), avg("salary"))
df.groupBy().agg(max("age"), avg("salary"))
2、 agg(exprs: Map[String, String]) 返回dataframe类型 ,同数学计算求值 map类型的
df.agg(Map("age" -> "max", "salary" -> "avg"))
df.groupBy().agg(Map("age" -> "max", "salary" -> "avg"))
3、 agg(aggExpr: (String, String), aggExprs: (String, String)*) 返回dataframe类型 ,同数学计算求值
df.agg(Map("age" -> "max", "salary" -> "avg"))
df.groupBy().agg(Map("age" -> "max", "salary" -> "avg"))
4、 apply(colName: String) 返回column类型,捕获输入进去列的对象
5、 as(alias: String) 返回一个新的dataframe类型,就是原来的一个别名
6、 col(colName: String) 返回column类型,捕获输入进去列的对象
7、 cube(col1: String, cols: String*) 返回一个GroupedData类型,根据某些字段来汇总
8、 distinct 去重 返回一个dataframe类型
9、 drop(col: Column) 删除某列 返回dataframe类型
10、 dropDuplicates(colNames: Array[String]) 删除相同的列 返回一个dataframe
11、 except(other: DataFrame) 返回一个dataframe,返回在当前集合存在的在其他集合不存在的
12、 explode[A, B](inputColumn: String, outputColumn: String)(f: (A) ⇒ TraversableOnce[B])(implicit arg0: scala.reflect.api.JavaUniverse.TypeTag[B]) 返回值是dataframe类型,这个 将一个字段进行更多行的拆分
df.explode("name","names") {name :String=> name.split(" ")}.show();
将name字段根据空格来拆分,拆分的字段放在names里面
13、 filter(conditionExpr: String): 刷选部分数据,返回dataframe类型 df.filter("age>10").show(); df.filter(df("age")>10).show(); df.where(df("age")>10).show(); 都可以
14、 groupBy(col1: String, cols: String*) 根据某写字段来汇总返回groupedate类型 df.groupBy("age").agg(Map("age" ->"count")).show();df.groupBy("age").avg().show();都可以
15、 intersect(other: DataFrame) 返回一个dataframe,在2个dataframe都存在的元素
16、 join(right: DataFrame, joinExprs: Column, joinType: String)
一个是关联的dataframe,第二个关联的条件,第三个关联的类型:inner, outer, left_outer, right_outer, leftsemi
df.join(ds,df("name")===ds("name") and df("age")===ds("age"),"outer").show();
17、 limit(n: Int) 返回dataframe类型 去n 条数据出来
18、 na: DataFrameNaFunctions ,可以调用dataframenafunctions的功能区做过滤 df.na.drop().show(); 删除为空的行
19、 orderBy(sortExprs: Column*) 做alise排序
20、 select(cols:string*) dataframe 做字段的刷选 df.select($"colA", $"colB" + 1)
21、 selectExpr(exprs: String*) 做字段的刷选 df.selectExpr("name","name as names","upper(name)","age+1").show();
22、 sort(sortExprs: Column*) 排序 df.sort(df("age").desc).show(); 默认是asc
23、 unionAll(other:Dataframe) 合并 df.unionAll(ds).show();
24、 withColumnRenamed(existingName: String, newName: String) 修改列表 df.withColumnRenamed("name","names").show();
25、 withColumn(colName: String, col: Column) 增加一列 df.withColumn("aa",df("name")).show(); 10、 dropDuplicates(colNames: Array[String]) 删除相同的列 返回一个dataframe
这一个写错了吧
dropDuplicates 的官方API:
dropDuplicates(scala.collection.Seq<java.lang.String> colNames)
(Scala-specific) Returns a new DataFrame with duplicate rows removed, considering only the subset of columns.
distinct的:官方API这么写的:
Returns a new DataFrame that contains only the unique rows from this DataFrame. This is an alias for dropDuplicates.
spark DataFrame 常见操作的更多相关文章
- 【spark】dataframe常见操作
spark dataframe派生于RDD类,但是提供了非常强大的数据操作功能.当然主要对类SQL的支持. 在实际工作中会遇到这样的情况,主要是会进行两个数据集的筛选.合并,重新入库. 首先加载数据集 ...
- spark RDD 常见操作
fold 操作 区别 与 co 1.mapValus 2.flatMapValues 3.comineByKey 4.foldByKey 5.reduceByKey 6.groupByKey 7.so ...
- Spark处理日志文件常见操作
spark有自己的集群计算技术,扩展了hadoop mr模型用于高效计算,包括交互式查询和 流计算.主要的特性就是内存的集群计算提升计算速度.在实际运用过程中也当然少不了对一些数据集的操作.下面将通过 ...
- spark dataframe操作集锦(提取前几行,合并,入库等)
https://blog.csdn.net/sparkexpert/article/details/51042970 spark dataframe派生于RDD类,但是提供了非常强大的数据操作功能.当 ...
- pyspark dataframe 常用操作
spark dataframe派生于RDD类,但是提供了非常强大的数据操作功能.当然主要对类SQL的支持. 在实际工作中会遇到这样的情况,主要是会进行两个数据集的筛选.合并,重新入库. 首先加 ...
- Spark DataFrame中的join使用说明
spark sql 中join的类型 Spark DataFrame中join与SQL很像,都有inner join, left join, right join, full join; 类型 说明 ...
- Pandas 常见操作详解
Pandas 常见操作详解 很多人有误解,总以为Pandas跟熊猫有点关系,跟gui叔创建Python一样觉得Pandas是某某奇葩程序员喜欢熊猫就以此命名,简单介绍一下,Pandas的命名来自于面板 ...
- spark dataframe unionall
今天本来想写一个spark dataframe unionall的demo,由于粗心报下面错误: Exception in thread "main" org.apache.spa ...
- 动态单链表的传统存储方式和10种常见操作-C语言实现
顺序线性表的优点:方便存取(随机的),特点是物理位置和逻辑为主都是连续的(相邻).但是也有不足,比如:前面的插入和删除算法,需要移动大量元素,浪费时间,那么链式线性表 (简称链表) 就能解决这个问题. ...
随机推荐
- 关于Map迭代循环,key和value的顺序问题
使用Hashtable,keySet()返回的顺序为降序(key降顺序) ---->6, 5, 4, 3, 2, 1使用TreeMap,keySet()返回的顺序为升序(key升顺序) ---- ...
- Category Theory: 01 One Structured Family of Structures
Category Theory: 01 One Structured Family of Structures 这次看来要放弃了.看了大概三分之一.似乎不能够让注意力集中了.先更新吧. 群的定义 \( ...
- 关于使用单片机读取外部电压ADC阻抗匹配的问题
单片机的基准电压一般为3.3V,如果外部信号超过了AD测量范围,可以采用电阻分压的方法,但是要注意阻抗匹配问题.比如,SMT32的模数输入阻抗约为10K,如果外接的分压电阻无法远小于该阻值,则会因为信 ...
- ag使用需要注意的问题
1. set env 对比服务器标准配置,修改本地 /etc/apache2/sites-available/default (远程链接服务器的办法: ssh 12x.xxx.xxx.xxx) 2. ...
- Leetcode——37.解数独 [##]
@author: ZZQ @software: PyCharm @file: leetcode37_solveSudoku.py @time: 2018/11/20 16:41 思路:递归回溯 首先, ...
- Day Three
站立式会议 站立式会议内容总结 442 今天:从本地导入电子书页面编写以及部分逻辑代码 遇到的问题:界面适配问题 明天:具体计划界面的编写,解决上面问题 331 今天:监听webview滑动底端事件 ...
- iOS 内存管理-copy、 retain、 assign 、readonly 、 readwrite、nonatomic、@property、@synthesize、@dynamic、IB_DESIGNABLE 、 IBInspectable、IBOutletCollection
浅谈iOS内存管理机制 alloc,retain,copy,release,autorelease 1)使用@property配合@synthesize可以让编译器自动实现getter/setter方 ...
- asp.net简述Web Forms开发模式
详情请查阅:http://www.runoob.com/aspnet/aspnet-intro.html 1.Web Forms 是三种创建 ASP.NET 网站和 Web 应用程序的编程模式中的一种 ...
- Software-Defined Networking:A Comprehensive Survey--Day3
(接Day2的内容 +2s) E. Layer V: Northbound Interfaces 南行接口已经得到广泛接受(OpenFlow),但现在就定义北向接口还为时尚早,开发不同的控制器经验一定 ...
- Docker(十八)-Docker配置DNS
Linux系统配置DNS的时候有一个问题,就是你在/ect/resolv.conf文件中添加上nameserver XXX.XXX.XXX.XXX的时候,当时是生效的,但是机器重启之后就失效了,所以我 ...