「BZOJ 3645」小朋友与二叉树

解题思路

令 \(G(x)\) 为关于可选大小集合的生成函数,即

\[G(x)=\sum[i\in c ] x^i
\]

令 \(F(x)\) 第 \(n\) 项的系数为为权值为 \(n\) 的二叉树的方案数,显然有

\[F(x)=F(x)^2G(x)+1\\
F^2(x)G(x)-F(x)+1=0 \\
F(x)=\dfrac{1\pm\sqrt{1-4G(x)}}{2G(x)}
\]

当 \(x\to 0\) 时,\(F(x)\) 的值为 \(1\) ,当取加号的时候发现

\[\lim_{x\to0} F(x)=\dfrac{1}{G(x)} \\ =\infty
\]

所以

\[F(x)=\dfrac{1-\sqrt{1-4G(x)}}{2G(x)}
\]

由于 \(2G(x)\) 的常数项为 \(0\) 不存在逆元,所以要稍作一些变化

\[F(x)=\dfrac{4G(x)}{2G(x)(1+\sqrt{1-4G(x)})} \\
=\dfrac{2}{1+\sqrt{1-4G(x)}}
\]

\(\sqrt{1-4G(x)}\) 的常数项为 \(1\) ,一遍开根一遍求逆就好了,复杂度 \(\mathcal O(n\log n)\) ,下面代码拖了多项式板子所以有用不到的部分。

code

/*program by mangoyang*/
#include<bits/stdc++.h>
#define inf (0x7f7f7f7f)
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
typedef long long ll;
using namespace std;
template <class T>
inline void read(T &x){
int ch = 0, f = 0; x = 0;
for(; !isdigit(ch); ch = getchar()) if(ch == '-') f = 1;
for(; isdigit(ch); ch = getchar()) x = x * 10 + ch - 48;
if(f) x = -x;
}
const int N = (1 << 22) + 5, P = 998244353, G = 3;
namespace poly{
int rev[N], W[N], invW[N], len, lg;
inline int Pow(int a, int b){
int ans = 1;
for(; b; b >>= 1, a = 1ll * a * a % P)
if(b & 1) ans = 1ll * ans * a % P;
return ans;
}
inline void init(){
for(int k = 2; k < N; k <<= 1)
W[k] = Pow(G, (P - 1) / k), invW[k] = Pow(W[k], P - 2);
}
inline void timesinit(int lenth){
for(len = 1, lg = 0; len <= lenth; len <<= 1, lg++);
for(int i = 0; i < len; i++)
rev[i] = (rev[i>>1] >> 1) | ((i & 1) << (lg - 1));
}
inline void DFT(int *a, int sgn){
for(int i = 0; i < len; i++) if(i < rev[i]) swap(a[i], a[rev[i]]);
for(int k = 2; k <= len; k <<= 1){
int w = ~sgn ? W[k] : invW[k];
for(int i = 0; i < len; i += k){
int now = 1;
for(int j = i; j < i + (k >> 1); j++){
int x = a[j], y = 1ll * a[j+(k>>1)] * now % P;
a[j] = (x + y) % P, a[j+(k>>1)] = (x - y + P) % P;
now = 1ll * now * w % P;
}
}
}
if(sgn == -1){
int Inv = Pow(len, P - 2);
for(int i = 0; i < len; i++) a[i] = 1ll * a[i] * Inv % P;
}
}
inline void getinv(int *a, int *b, int n){
static int tmp[N];
if(n == 1) return (void) (b[0] = Pow(a[0], P - 2));
getinv(a, b, (n + 1) / 2);
timesinit(n * 2 - 1);
for(int i = 0; i < len; i++) tmp[i] = i < n ? a[i] : 0;
DFT(tmp, 1), DFT(b, 1);
for(int i = 0; i < len; i++)
b[i] = 1ll * (2 - 1ll * tmp[i] * b[i] % P + P) % P * b[i] % P;
DFT(b, -1);
for(int i = n; i < len; i++) b[i] = 0;
for(int i = 0; i < len; i++) tmp[i] = 0;
}
inline void getsqrt(int *a, int *b, int n){
static int tmp1[N], tmp2[N];
if(n == 1) return (void) (b[0] = 1);
getsqrt(a, b, (n + 1) / 2);
for(int i = 0; i < n; i++) tmp1[i] = a[i];
getinv(b, tmp2, n), timesinit(n * 2 - 1);
DFT(tmp1, 1), DFT(tmp2, 1);
for(int i = 0; i < len; i++) tmp1[i] = 1ll * tmp1[i] * tmp2[i] % P;
DFT(tmp1, -1);
for(int i = 0; i < len; i++)
b[i] = 1ll * (b[i] + tmp1[i]) % P * Pow(2, P - 2) % P;
for(int i = n; i < len; i++) b[i] = 0;
for(int i = 0; i < len; i++) tmp1[i] = tmp2[i] = 0;
}
inline void getln(int *a, int *b, int n){
static int tmp[N];
getinv(a, b, n), timesinit(n * 2 - 1);
for(int i = 1; i < n; i++) tmp[i-1] = 1ll * a[i] * i % P;
DFT(tmp, 1), DFT(b, 1);
for(int i = 0; i < len; i++) b[i] = 1ll * tmp[i] * b[i] % P;
DFT(b, -1);
for(int i = len - 1; i; i--) b[i] = 1ll * b[i-1] * Pow(i, P - 2) % P;
b[0] = 0;
for(int i = n; i < len; i++) b[i] = 0;
for(int i = 0; i < len; i++) tmp[i] = 0;
}
inline void getexp(int *a, int *b, int n){
static int tmp[N];
if(n == 1) return (void) (b[0] = 1);
getexp(a, b, (n + 1) / 2);
getln(b, tmp, n), timesinit(n * 2 - 1);
for(int i = 0; i < n; i++) tmp[i] = (!i - tmp[i] + a[i] + P) % P;
DFT(tmp, 1), DFT(b, 1);
for(int i = 0; i < len; i++) b[i] = 1ll * b[i] * tmp[i] % P;
DFT(b, -1);
for(int i = n; i < len; i++) b[i] = 0;
for(int i = 0; i < len; i++) tmp[i] = 0;
}
inline void power(int *a, int *b, int n, int m, ll k){
static int tmp[N];
for(int i = 0; i < m; i++) b[i] = 0;
int fir = -1;
for(int i = 0; i < n; i++) if(a[i]){ fir = i; break; }
if(fir && k >= m) return;
if(fir == -1 || 1ll * fir * k >= m) return;
for(int i = fir; i < n; i++) b[i-fir] = a[i];
for(int i = 0; i < n - fir; i++)
b[i] = 1ll * b[i] * Pow(a[fir], P - 2) % P;
getln(b, tmp, m);
for(int i = 0; i < m; i++)
b[i] = 1ll * tmp[i] * (k % P) % P, tmp[i] = 0;
getexp(b, tmp, m);
for(int i = m; i >= fir * k; i--)
b[i] = 1ll * tmp[i-fir*k] * Pow(a[fir], k % (P - 1)) % P;
for(int i = 0; i < fir * k; i++) b[i] = 0;
for(int i = 0; i < m; i++) tmp[i] = 0;
}
}
using poly::Pow;
using poly::DFT;
using poly::timesinit;
int a[N], b[N], c[N], n, m;
int main(){
poly::init(), read(n), read(m), m++;
for(int i = 1, x; i <= n; i++)
read(x), a[x] = P - 4;
a[0]++, poly::getsqrt(a, b, m);
b[0] = (b[0] + 1) % P;
poly::getinv(b, c, m);
for(int i = 1; i < m; i++) printf("%lld\n", 2ll * c[i] % P);
return 0;
}

「BZOJ 3645」小朋友与二叉树的更多相关文章

  1. 「BZOJ 4228」Tibbar的后花园

    「BZOJ 4228」Tibbar的后花园 Please contact lydsy2012@163.com! 警告 解题思路 可以证明最终的图中所有点的度数都 \(< 3\) ,且不存在环长是 ...

  2. 「BZOJ 4502」串

    「BZOJ 4502」串 题目描述 兔子们在玩字符串的游戏.首先,它们拿出了一个字符串集合 \(S\),然后它们定义一个字符串为"好"的,当且仅当它可以被分成非空的两段,其中每一段 ...

  3. 「BZOJ 4289」 PA2012 Tax

    「BZOJ 4289」 PA2012 Tax 题目描述 给出一个 \(N\) 个点 \(M\) 条边的无向图,经过一个点的代价是进入和离开这个点的两条边的边权的较大值,求从起点 \(1\) 到点 \( ...

  4. 「BZOJ 2534」 L - gap字符串

    「BZOJ 2534」 L - gap字符串 题目描述 有一种形如 \(uv u\) 形式的字符串,其中 \(u\) 是非空字符串,且 \(v\) 的长度正好为 \(L\), 那么称这个字符串为 \( ...

  5. 「BZOJ 2956」模积和

    「BZOJ 2956」模积和 令 \(l=\min(n,m)\).这个 \(i\neq j\) 非常不优雅,所以我们考虑分开计算,即: \[\begin{aligned} &\sum_{i=1 ...

  6. Solution -「BZOJ 3812」主旋律

    \(\mathcal{Description}\)   Link.   给定含 \(n\) 个点 \(m\) 条边的简单有向图 \(G=(V,E)\),求 \(H=(V,E'\subseteq E)\ ...

  7. 「BZOJ 1001」狼抓兔子

    题目链接 luogu bzoj \(Solution\) 这个貌似没有什么好讲的吧,直接按照这个给的图建图就好了啊,没有什么脑子,但是几点要注意的: 建双向边啊. 要这么写,中间还要写一个\(whil ...

  8. 「BZOJ 5188」「Usaco2018 Jan」MooTube

    题目链接 luogu bzoj \(Describe\) 有一个\(n\)个节点的树,边有权值,定义两个节点之间的距离为两点之间的路径上的最小边权 给你\(Q\)个询问,问你与点\(v\)的距离大于等 ...

  9. 「BZOJ 1791」「IOI 2008」Island「基环树」

    题意 求基环树森林所有基环树的直径之和 题解 考虑的一个基环树的直径,只会有两种情况,第一种是某个环上结点子树的直径,第二种是从两个环上结点子树内的最深路径,加上环上这两个结点之间的较长路径. 那就找 ...

随机推荐

  1. [软件]Xcode查找系统framework所在路径

    有的时候, 我们不小心改了头文件, 导致Xcode系统库被修改(改回去也不行) 假设我改的是UIKit.framework类库里面的一个文件, 那么你只需要从另一个好使的电脑上, 在这个路径找到UIK ...

  2. F - Friends ZOJ - 3710(暴力)

    题目链接:https://cn.vjudge.net/contest/280949#problem/F 题目大意:给你n个人,然后给你m个关系,每个关系输入t1, t2 .代表t1和t2是朋友关系(双 ...

  3. python 入门基础4 --数据类型及内置方法

    今日目录: 零.解压赋值+for循环 一. 可变/不可变和有序/无序 二.基本数据类型及内置方法 1.整型 int 2.浮点型float 3.字符串类型 4.列表类型 三.后期补充内容 零.解压赋值+ ...

  4. ZeroMQ安装说明

    ZeroMQ安装说明 1.   安装 1.1.Linux zmq安装 安装过程参考地址:http://zeromq.org/intro:get-the-software的说明 安装步骤如下(在安装时参 ...

  5. Opencv学习笔记——release和debug两个模式的运行问题

    本文为原创作品,转载请注明出处 欢迎关注我的博客:http://blog.csdn.net/hit2015spring和http://www.cnblogs.com/xujianqing/ 作者:晨凫 ...

  6. Linux获取/dev/input目录下的event对应的设备【转】

    转自:https://blog.csdn.net/qq_21792169/article/details/51458855 当我们在Linux操作系统下使用input子系统时,当我们先插鼠标,在插上摄 ...

  7. usb的一些网址

    一些关于usb的帖子.网址: usb gadget device g_ether.ko 做成usbnetwork http://bbs.csdn.net/topics/370120345 Linux ...

  8. MVC 控制器中传递dynamic(对象) 给视图

    有时候不想重新定义一个实体,则使用 dynamic 来定义匿名类型. //匿名类型 传递到前台 Model dynamic viewModel = new { UserID = 5016 }; ret ...

  9. asp.net动态增加服务器端控件并提交表单

    为什么要用原生的呢? 1.目的 原生出现浏览器兼容性问题 极少,不用测试多浏览兼容性 .需要考虑到市面上的其他垃圾浏览器. 2.性能不好 如果不考虑第一条 你可以换一种方式 直接上代码 .aspx页面 ...

  10. 移动端HTML5开发 选择方案

    如今出现了大量的CSS前端框架,但真正优秀的框架只有少数几个. 本文将会比较其中五个最佳的框架.每个框架都有自己的优点和缺点,以及具体的应用领域,你可以根据自己的具体项目需求进行选择.此外,许多选项都 ...