今天心血来潮,来学习一下fhq treap(其实原因是本校有个OIer名叫fh,当然不是我)

简介

fhq treap 学名好像是“非旋转式treap及可持久化”。。。听上去怪怪的。其实就是可以代替LCT、BST等等码量很高的东东。

定义

struct node{
int son[2],val,rand_val,sz;//很好理解,从左到右依次为:左右儿子编号,权值,随机权值(用处后面会讲),此节点下(包括此节点)共有多少个节点
}tr[N];

操作

最基本的操作

其实都不应该叫做操作。应该类似于维护的。。。

void update(int x){
tr[x].sz=tr[tr[x].son[0]].sz+tr[tr[x].son[1]].sz+1;//更新节点个数,将左右子树节点个数+本节点(不要忘了。。QWQ)
}
int new_node(int v){
tot++;//总节点编号++
tr[tot].sz=1;//默认为1(叶子)
tr[tot].val=v;//权值赋值
tr[tot].rand_val=rand();//随机rand权值
return tot;//返回节点编号
}

基本操作

其实就三个啦。。。。

操作1:merge(默认x<y)

merge的操作其实就是把两棵树合并成一棵(真好!)。使用递归。按照rand出来的权值进行判断是左子树还是右子树。

int merge(int x,int y){
if(!x||!y) return x+y;//如果有一棵树是空的,那么就可以直接退出
if(tr[x].rand_val<tr[y].rand_val){//按照rand的权值确定左右子树
tr[x].son[1]=merge(tr[x].son[1],y);//将x的右儿子中merge树y
update(x);//更新节点数
return x;//返回
}else{//同理
tr[y].son[0]=merge(x,tr[y].son[0]);
update(y);
return y;
}
}

操作2:split

split的操作其实就是把一棵树拆成两棵子树。当然有两种拆法,一种是按照权值,还有一种是按照节点数分。

这里的操作2是按照权值分,操作3按照节点数分。

void split(int now,int k,int &x,int &y){//以权值k来分now树,成x,y
if(!now) x=y=0;//如果当前操作为空树,返回空子树
else{
if(tr[now].val<=k) x=now,split(tr[now].son[1],k,tr[now].son[1],y);//如果小于或等于权值k,将左子树改为当前的树,并将当前的树的右子树继续往下分(把所有小于等于权值k的节点划分到一棵树当中)
else y=now,split(tr[now].son[0],k,x,tr[now].son[0]);//同理
update(now);//注意更新节点数
}
}

操作3:rank

在操作2中已经说明过了,是按照节点数分(有点像其他数据结构中查找第k名的操作)

int rank(int now,int k){//在now树中,查找以权值排序的第k个节点
while(1){
if(k<=tr[tr[now].son[0]].sz) now=tr[now].son[0];//如果k在左子树当中那就更新
else{
if(k==tr[tr[now].son[0]].sz+1) return now;//正好找到
else{//如果k在右子树当中,注意k还要减去左子树的个数+本节点
k-=tr[tr[now].son[0]].sz+1;
now=tr[now].son[1];
}
}
}
}

普通的操作

拿一道例题来讲吧。。。

传送门

其实操作并没有高级多少(主要是想象力。。。)

操作1:插入\(x\)数

split(root,a,x,y);
root=merge(merge(x,new_node(a)),y);

这个比较好理解,我们先把树分为x,y两部分,然后把新的节点a看做是一棵树,先与x合并,合并完之后将合并的整体与y合并

操作2:删除\(x\)数(若有多个相同的数,因只删除一个)

split(root,a,x,z);
split(x,a-1,x,y);
y=merge(tr[y].son[0],tr[y].son[1]);
root=merge(merge(x,y),z);

首先我们把树分为x和z两部分

那么x树中的最大权值为a

再把x分为x和y两部分。

此时x中的最大权值为a-1,且权值为a的节点一定是y的根节点。

然后我们可以无视y的根节点,直接把y的左右孩子合并起来,这样就成功的删除了根节点,

最后再把x,y,z合并起来就好

操作3:查询\(x\)数的排名(排名定义为比当前数小的数的个数+1。若有多个相同的数,因输出最小的排名)

split(root,a-1,x,y);
printf("%d\n",tr[x].sz+1);
root=merge(x,y);

我们首先按照a-1的权值把树分开。

那么x树中最大的应该是a-1。

那么a的排名就是siz[x]+1

操作4:查询排名为\(x\)的数

//rank函数不是白吃饭的

printf("%d\n",tr[rank(root,a)].val);

不解释了QWQ

操作5:求\(x\)的前驱(前驱定义为小于\(x\),且最大的数)

//rank函数真的不是白吃饭的

split(root,a-1,x,y);
printf("%d\n",tr[rank(x,tr[x].sz)].val);
root=merge(x,y);

因为要小于a,那么我们按照a-1的权值划分,

x中最大的一定是<=a-1的,

所以我们直接输出x中最大的数就好,

(这里有一个小技巧,因为sz储存的是节点的数目,然后根据二叉查找树的性质,编号最大的就是值最大的)

操作6:求\(x\)的后继(后继定义为大于\(x\),且最小的数)

//rank函数真的不是白吃饭的

split(root,a,x,y);
printf("%d\n",tr[rank(y,1)].val);
root=merge(x,y);

因为要大于a,那么我们按照a的权值划分(取子树y),

y中最小的一定是>a的,

所以我们直接输出y中最小的数就好,

(像操作5一样这里有一个小技巧,因为sz储存的是节点的数目,然后根据二叉查找树的性质,编号最小的就是值最小的)

完整的代码:

#include<bits/stdc++.h>
#define N 100010
using namespace std;
inline int read(){
char ch=getchar();int res=0,f=1;
while(ch<'0'||ch>'9'){if(ch=='-') f=-1;ch=getchar();}
while(ch>='0'&&ch<='9') res=res*10+ch-'0',ch=getchar();
return res*f;
}
inline void write(int x){
if(x<0) putchar('-'),x=-x;
if(x<10) putchar(x+'0');
else{
write(x/10);
putchar(x%10+'0');
}
}
struct node{
int son[2],val,rand_val,sz;
}tr[N];
int tot=0,root=0;
void update(int x){
tr[x].sz=tr[tr[x].son[0]].sz+tr[tr[x].son[1]].sz+1;
}
int new_node(int v){
tot++;
tr[tot].sz=1;
tr[tot].val=v;
tr[tot].rand_val=rand();
return tot;
}
int merge(int x,int y){
if(!x||!y) return x+y;
if(tr[x].rand_val<tr[y].rand_val){
tr[x].son[1]=merge(tr[x].son[1],y);
update(x);
return x;
}else{
tr[y].son[0]=merge(x,tr[y].son[0]);
update(y);
return y;
}
}
void split(int now,int k,int &x,int &y){
if(!now) x=y=0;
else{
if(tr[now].val<=k) x=now,split(tr[now].son[1],k,tr[now].son[1],y);
else y=now,split(tr[now].son[0],k,x,tr[now].son[0]);
update(now);
}
}
int rank(int now,int k){
while(1){
if(k<=tr[tr[now].son[0]].sz) now=tr[now].son[0];
else{
if(k==tr[tr[now].son[0]].sz+1) return now;
else{
k-=tr[tr[now].son[0]].sz+1;
now=tr[now].son[1];
}
}
}
}
int T,type,x,y,z,a,b;
int main(){
srand((unsigned)time(NULL));
scanf("%d",&T);
while(T--){
scanf("%d%d",&type,&a);
if(type==1){
split(root,a,x,y);
root=merge(merge(x,new_node(a)),y);
}else if(type==2){
split(root,a,x,z);
split(x,a-1,x,y);
y=merge(tr[y].son[0],tr[y].son[1]);
root=merge(merge(x,y),z);
}else if(type==3){
split(root,a-1,x,y);
printf("%d\n",tr[x].sz+1);
root=merge(x,y);
}else if(type==4) printf("%d\n",tr[rank(root,a)].val);
else if(type==5){
split(root,a-1,x,y);
printf("%d\n",tr[rank(x,tr[x].sz)].val);
root=merge(x,y);
}else if(type==6){
split(root,a,x,y);
printf("%d\n",tr[rank(y,1)].val);
root=merge(x,y);
}
}
return 0;
}

写在最后

当然,fhqtreap的应用不仅限于这些,还有许多,还待我继续学习。。。

参考:zwfymqz

mocha从两位大佬的博文中窃取了许多。。。

fhq treap 学习笔记的更多相关文章

  1. FHQ treap学习(复习)笔记

    .....好吧....最后一篇学习笔记的flag它倒了..... 好吧,这篇笔记也鸽了好久好久了... 比赛前刷模板,才想着还是补个坑吧... FHQ,这个神仙(范浩强大佬),发明了这个神仙的数据结构 ...

  2. 左偏树 / 非旋转treap学习笔记

    背景 非旋转treap真的好久没有用过了... 左偏树由于之前学的时候没有写学习笔记, 学得也并不牢固. 所以打算写这么一篇学习笔记, 讲讲左偏树和非旋转treap. 左偏树 定义 左偏树(Lefti ...

  3. treap学习笔记

    treap是个很神奇的数据结构. 给你一个问题,你可以解决它吗? 这个问题需要treap这个数据结构. 众所周知,二叉查找树的查找效率低的原因是不平衡,而我们又不希望用各种奇奇怪怪的旋转来使它平衡,那 ...

  4. fhq treap抄袭笔记

    目录 碎碎念 点一下 注意!!! 模板 fhq treap 碎碎念 我咋感觉合并这么像左偏树呢 ps:难道你们的treap都是小头堆的吗 fhq真的是神人 现在看以前学的splay是有点恶心,尤其是压 ...

  5. Treap + 无旋转Treap 学习笔记

    普通的Treap模板 今天自己实现成功 /* * @Author: chenkexing * @Date: 2019-08-02 20:30:39 * @Last Modified by: chenk ...

  6. [Treap][学习笔记]

    平衡树 平衡树就是一种可以在log的时间复杂度内完成数据的插入,删除,查找第k大,查询排名,查询前驱后继以及其他许多操作的数据结构. Treap treap是一种比较好写,常数比较小,可以实现平衡树基 ...

  7. Treap-平衡树学习笔记

    平衡树-Treap学习笔记 最近刚学了Treap 发现这种数据结构真的是--妙啊妙啊~~ 咳咳.... 所以发一发博客,也是为了加深蒟蒻自己的理解 顺便帮助一下各位小伙伴们 切入正题 Treap的结构 ...

  8. 「FHQ Treap」学习笔记

    话说天下大事,就像fhq treap —— 分久必合,合久必分 简单讲一讲.非旋treap主要依靠分裂和合并来实现操作.(递归,不维护fa不维护cnt) 合并的前提是两棵树的权值满足一边的最大的比另一 ...

  9. 「学习笔记」 FHQ Treap

    FHQ Treap FHQ Treap (%%%发明者范浩强年年NOI金牌)是一种神奇的数据结构,也叫非旋Treap,它不像Treap zig zag搞不清楚(所以叫非旋嘛),也不像Splay完全看不 ...

随机推荐

  1. ABP-JavaScript API

    一.AJAX 1,ABP采用的方式 ASP.NET Boilerplate通过用abp.ajax函数包装AJAX调用来自动执行其中的一些步骤. 一个例子ajax调用: var newPerson = ...

  2. iOS 打开系统设置的常用功能

    说明: 跳转到系统设置不同功能界面,只要知道路径都很简单,路径可以自己打开手机设置界面看, 照着模板把对应的名称替换就可以了,但是得知道对应功能的英文名称. 1. prefs:root=Privacy ...

  3. 51nod 1206 && hdu 1828 Picture (扫描线+离散化+线段树 矩阵周长并)

    1206 Picture  题目来源: IOI 1998 基准时间限制:2 秒 空间限制:131072 KB 分值: 160 难度:6级算法题  收藏  关注 给出平面上的N个矩形(矩形的边平行于X轴 ...

  4. youcompleteme 自动补全

    1. 拷贝配置文件 cp ~/.vim/bundle/YouCompleteMe/cpp/ycm/.ycm_extra_conf.py ~/.vim/.ycm_extra_conf.py 2. 修改配 ...

  5. 简单prufer应用

    [bzoj1005] Description 自从明明学了树的结构,就对奇怪的树产生了兴趣......给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的树? ...

  6. 洛谷 P2862 [USACO06JAN]把牛Corral the Cows 解题报告

    P2862 [USACO06JAN]把牛Corral the Cows 题目描述 Farmer John wishes to build a corral for his cows. Being fi ...

  7. LookupError: unknown encoding: cp65001解决方案

    本人遇到这个问题搜索了很多网站,有人建议在cmd中执行命令chcp 936,然而,,,最终决定更换cmd窗口,window的cmd真的很烂, 果断使用git cmd,完美解决...

  8. sqlserver收缩日志的几种方式

    sqlserver收缩日志的几种方式   [sql] --参考    压缩日志及数据库文件大小      /*--特别注意       请按步骤进行,未进行前面的步骤,请不要做后面的步骤    否则可 ...

  9. 函数和常用模块【day06】:shutil模块(四)

    本节内容 简书 模块详解 压缩解压 一.简述 我们在日常处理文件时,经常用到os模块,但是有的时候你会发现,像拷贝.删除.打包.压缩等文件操作,在os模块中没有对应的函数去操作,下面我们就来讲讲高级的 ...

  10. [整理]zepto的初次使用

    http://www.css88.com/doc/zeptojs_api/ http://chaoskeh.com/blog/some-experience-of-using-zepto.html