参考:林大贵.TensorFlow+Keras深度学习人工智能实践应用[M].北京:清华大学出版社,2018.

首先在命令行中写入 activate tensorflow和jupyter notebook,运行如下代码。当然,事先准备好MNIST数据集。

 # coding: utf-8

 # In[4]:

 from keras.datasets import mnist
from keras.utils import np_utils
import numpy as np
np.random.seed(10) # In[5]: (x_train,y_train),(x_test,y_test)=mnist.load_data() # In[6]: x_train4d = x_train.reshape(x_train.shape[0],28,28,1).astype('float32')
x_test4d = x_test.reshape(x_test.shape[0],28,28,1).astype('float32') # In[7]: x_train4d_normalize = x_train4d/255
x_test4d_normalize = x_test4d/255 # In[8]: y_train_oneHot = np_utils.to_categorical(y_train)
y_test_oneHot = np_utils.to_categorical(y_test) # In[9]: from keras.models import Sequential
from keras.layers import Dense,Dropout,Flatten,Conv2D,MaxPooling2D # In[10]: model = Sequential() # In[11]: model.add(Conv2D(filters = 16,
kernel_size = (5,5),
padding = 'same',
input_shape = (28,28,1),
activation = ('relu')
)) # In[12]: model.add(MaxPooling2D(pool_size=(2,2))) # In[13]: model.add(Conv2D(filters = 36,
kernel_size = (5,5),
padding = 'same',
activation = 'relu')) # In[14]: model.add(MaxPooling2D(pool_size=(2,2))) # In[15]: model.add(Dropout(0,255)) # In[16]: model.add(Flatten()) # In[17]: model.add(Dense(128,activation = 'relu')) # In[18]: model.add(Dropout(0.5)) # In[19]: model.add(Dense(10,activation = 'sigmoid')) # In[20]: print(model.summary()) # In[21]: model.compile(loss='categorical_crossentropy',
optimizer = 'adam',
metrics = ['accuracy']) # In[22]: train_history = model.fit(x = x_train4d_normalize,
y = y_train_oneHot,
validation_split = 0.2,
epochs = 10,
batch_size = 300,
verbose = 2) # In[23]: import matplotlib.pyplot as plt
def show_train_history(train_history,train,validation):
plt.plot(train_history.history[train])
plt.plot(train_history.history[validation])
plt.title('Train_History')
plt.ylabel(train)
plt.xlabel('Epoch')
plt.legend(['train','validation'], loc = 'upper left')
plt.show() # In[24]: show_train_history(train_history,'acc','val_acc') # In[25]: show_train_history(train_history,'loss','val_loss') # In[26]: scores = model.evaluate(x_test4d_normalize,y_test_oneHot)
scores[1] # In[27]: def plot_image_labels_prediction(images,labels,prediction,idx,num=10):
fig = plt.gcf()
fig.set_size_inches(12,24)
if num>50 : num = 50
for i in range(0,num):
ax = plt.subplot(10,5,1+i)
ax.imshow(images[idx],cmap='binary')
title = "lable="+str(labels[idx])
if len(prediction)>0:
title+=",predict="+str(prediction[idx])
ax.set_title(title,fontsize=10)
ax.set_xticks([]);ax.set_yticks([])
idx+=1
plt.show() # In[28]: prediction = model.predict_classes(x_test4d_normalize) # In[29]: plot_image_labels_prediction(x_test,
y_test,
prediction,
0,
50) # In[30]: import pandas as pd # In[31]: pd.crosstab(y_test,
prediction,
rownames=['label'],
colnames=['predict']) # In[ ]:

卷积神经网络简介:https://www.cnblogs.com/bai2018/p/10413889.html

产生如下神经网络:

其中加入的dropout层用于避免过度拟合。在每次迭代时,随机舍弃一部分的训练样本。

训练效果较好。

林大贵.TensorFlow+Keras深度学习人工智能实践应用[M].北京:清华大学出版社,2018.

keras框架的CNN手写数字识别MNIST的更多相关文章

  1. keras框架的MLP手写数字识别MNIST,梳理?

    keras框架的MLP手写数字识别MNIST 代码: # coding: utf-8 # In[1]: import numpy as np import pandas as pd from kera ...

  2. TensorFlow 之 手写数字识别MNIST

    官方文档: MNIST For ML Beginners - https://www.tensorflow.org/get_started/mnist/beginners Deep MNIST for ...

  3. Keras cnn 手写数字识别示例

    #基于mnist数据集的手写数字识别 #构造了cnn网络拟合识别函数,前两层为卷积层,第三层为池化层,第四层为Flatten层,最后两层为全连接层 #基于Keras 2.1.1 Tensorflow ...

  4. CNN 手写数字识别

    1. 知识点准备 在了解 CNN 网络神经之前有两个概念要理解,第一是二维图像上卷积的概念,第二是 pooling 的概念. a. 卷积 关于卷积的概念和细节可以参考这里,卷积运算有两个非常重要特性, ...

  5. 卷积神经网络CNN 手写数字识别

    1. 知识点准备 在了解 CNN 网络神经之前有两个概念要理解,第一是二维图像上卷积的概念,第二是 pooling 的概念. a. 卷积 关于卷积的概念和细节可以参考这里,卷积运算有两个非常重要特性, ...

  6. kaggle 实战 (2): CNN 手写数字识别

    文章目录 Tensorflow 官方示例 CNN 提交结果 Tensorflow 官方示例 import tensorflow as tf mnist = tf.keras.datasets.mnis ...

  7. pytorch CNN 手写数字识别

    一个被放弃的入门级的例子终于被我实现了,虽然还不太完美,但还是想记录下 1.预处理 相比较从库里下载数据集(关键是经常失败,格式也看不懂),更喜欢直接拿图片,从网上找了半天,最后从CSDN上下载了一个 ...

  8. keras基于卷积网络手写数字识别

    import time import keras from keras.utils import np_utils start = time.time() (x_train, y_train), (x ...

  9. Tensorflow手写数字识别---MNIST

    MNIST数据集:包含数字0-9的灰度图, 图片size为28x28.训练样本:55000,测试样本:10000,验证集:5000

随机推荐

  1. 已知一个函数rand7()能够生成1-7的随机数,请给出一个函数rand10(),该函数能够生成1-10的随机数。

    题目: 已知一个函数rand7()能够生成1-7的随机数,请给出一个函数,该函数能够生成1-10的随机数. 思路: 假如已知一个函数能够生成1-49的随机数,那么如何以此生成1-10的随机数呢? 解法 ...

  2. python 读取文件第一列 空格隔开的数据

    file=open('6230hand.log','r') result=list() for c in file.readlines(): c_array=c.split(" " ...

  3. 100. Same Tree (Tree;DFS)

    Given two binary trees, write a function to check if they are equal or not. Two binary trees are con ...

  4. RxJS之工具操作符 ( Angular环境 )

    一 delay操作符 源Observable延迟指定时间,再开始发射值. import { Component, OnInit } from '@angular/core'; import { of ...

  5. c#: TabControl隐藏选项卡(WizardPages)

    如Delphi之TPageControl控件,其TTabSheet有TabVisible属性,在制作类似Wizard页面切换时,甚为有用. 而c#对应之TabControl控件,其页面TabPage无 ...

  6. 【nlp】中文分词基础原则及正向最大匹配法、逆向最大匹配法、双向最大匹配法的分析

    分词算法设计中的几个基本原则: 1.颗粒度越大越好:用于进行语义分析的文本分词,要求分词结果的颗粒度越大,即单词的字数越多,所能表示的含义越确切,如:“公安局长”可以分为“公安 局长”.“公安局 长” ...

  7. Django的Rbac介绍3

    今天的博客主要是记录一下如何实现左侧菜单,这里我们想实现的效果就是,如果用户有查看用户的权限,则显示查看用户的左侧菜单,如果用户有查看角色的权限,则显示查看角色的左侧菜单,如果两者都有,则需要显示两个 ...

  8. 16-acrobat por 简单使用指南

    用于pdf编辑,这里我主要讲下图片的切割和保存,以及合并: 切割选中区域双击 合并的话,在编辑界面选中对象,复制,在另一个pdf的编辑界面粘贴,并挪动位置:

  9. 一、MySQL的连接建立与权限

    一.MySQL的连接建立与权限 写这些的目的一是记录下工作这几年所学,算是成长脚印吧.二是复习一遍,也给自己当笔记看,通篇观点都属于个人理解较多.读者观看的时候也需要自己判断下是否正确,另外,记下一段 ...

  10. [z]重建索引

    https://blog.csdn.net/funnyfu0101/article/details/52961485 所有执行的结果是脚本命令集合,可以用来创建索引: a)在plsql中使用execu ...