取石子游戏

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 2872    Accepted Submission(s): 1420

Problem Description
有两堆石子,数量任意,可以不同。游戏开始由两个人轮流取石子。游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子;二是可以在两堆中同时取走相同数量的石子。最后把石子全部取完者为胜者。现在给出初始的两堆石子的数目,如果轮到你先取,假设双方都采取最好的策略,问最后你是胜者还是败者。
 
Input
输入包含若干行,表示若干种石子的初始情况,其中每一行包含两个非负整数a和b,表示两堆石子的数目,a和b都不大于1,000,000,000。
 
Output
输出对应也有若干行,每行包含一个数字1或0,如果最后你是胜者,则为1,反之,则为0。
 
Sample Input
2 1
8 4
4 7
 
Sample Output
0
1
0

只是我第一道博弈题,这个是威佐夫博弈

所谓威佐夫博弈,是ACM题中常见的组合游戏中的一种,大致上是这样的:
有两堆石子,不妨先认为一堆有 10,另一堆有 15 个,双方轮流取走一些石子,合法的取法有如下两种:
1、在一堆石子中取走任意多颗;
2、在两堆石子中取走相同多的任意颗;
约定取走最后一颗石子的人为赢家,求必胜策略。

两堆石头地位是一样的,我们用余下的石子数(a,b)来表示状态,并画在平面直角坐标系上。

和前面类似,(0,0)肯定是 P 态,又叫必败态。(0,k),(k,0),(k,k)系列的节点肯定不是 P 态,而是必胜态,你面对这样的局面一定会胜,只要按照规则取一次就可以了。再看 y = x 上方未被划去的格点,(1,2)是 P 态。k > 2 时,(1,k)不是 P 态,比如你要是面对(1,3)的局面,你是有可能赢的。同理,(k,2),(1 + k, 2 + k)也不是 P 态,划去这些点以及它们的对称点,然后再找出 y = x 上方剩余的点,你会发现(3,5)是一个 P 态,如此下去,如果我们只找出 a ≤ b 的 P 态,则它们是(0,0),(1,2),(3,5),(4,7),(6,10)……它们有什么规律吗?

忽略(0,0),很快会发现对于第 i 个 P 态的 a,a = i * (sqrt(5) + 1)/2 然后取整;而 b = a + i。居然和黄金分割点扯上了关系。
前几个必败点如下:(0,0),(1,2),(3,5),(4,7),(6,10),(8,13)……可以发现,对于第k个必败点(m(k),n(k))来说,m(k)是前面没有出现过的最小自然数,n(k)=m(k)+k。
判断一个点是不是必败点的公式与黄金分割有关(我无法给出严格的数学证明,谁能给出严格的数学证明记得告诉我),为:
m(k) = k * (1 + sqrt(5))/2
n(k) = m(k) + k;

#include<iostream>//用G++交,
#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std; int main()
{
int n,m,k,t;
while(scanf("%d%d",&n,&m )==)
{
if(n<m)//交换n,m的值。使n>m ;
{
n^=m;
m^=n;
n^=m;
}
k=n-m;
t=k*(+sqrt( ))/;
if(t==m)
printf("0\n");
else
printf("1\n");
}
return ;
}

取石子游戏(hdu1527 博弈)的更多相关文章

  1. HDU 2516 取石子游戏(FIB博弈)

    取石子游戏 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submi ...

  2. 取石子游戏 BZOJ1874 博弈

    小H和小Z正在玩一个取石子游戏. 取石子游戏的规则是这样的,每个人每次可以从一堆石子中取出若干个石子, 每次取石子的个数有限制,谁不能取石子时就会输掉游戏. 小H先进行操作,他想问你他是否有必胜策略, ...

  3. 【BZOJ1413】取石子游戏(博弈,区间DP)

    题意:在研究过Nim游戏及各种变种之后,Orez又发现了一种全新的取石子游戏,这个游戏是这样的: 有n堆石子,将这n堆石子摆成一排.游戏由两个人进行,两人轮流操作,每次操作者都可以从最左或最右的一堆中 ...

  4. hdu 2516 取石子游戏 (Fibonacci博弈)

    取石子游戏 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submi ...

  5. hdu1527取石子游戏(威佐夫博弈)

    取石子游戏 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submi ...

  6. hdu1527取石子游戏---(威佐夫博弈)

    感谢 http://www.cnblogs.com/yuyixingkong/p/3362476.html 取石子游戏 Time Limit: 2000/1000 MS (Java/Others)   ...

  7. 【洛谷2252&HDU1527】取石子游戏(博弈论)

    题面 HDU1527 取石子游戏 洛谷2252 取石子游戏 题解 裸的威佐夫博弈 #include<iostream> #include<cmath> using namesp ...

  8. HDU 2516 取石子游戏(斐波那契博弈)

    取石子游戏 Time Limit: 2000/1000 MS(Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submissi ...

  9. POJ.1067 取石子游戏 (博弈论 威佐夫博弈)

    POJ.1067 取石子游戏 (博弈论 威佐夫博弈) 题意分析 简单的威佐夫博弈 博弈论快速入门 代码总览 #include <cstdio> #include <cmath> ...

随机推荐

  1. UWP 多语言的三个概念

    首先了解一下 RFC4646 和 BCP-47 是什么东西: RFC4646 The name is a combination of an ISO 639 two-letter lowercase ...

  2. Android TV 开发(5)

    本文来自网易云社区 作者:孙有军 问题3:TV launcher中没有入口图标 如果需要出现入口图标,你必须要在AndroidManifest中配置action为android.intent.acti ...

  3. 多项式&生成函数(~~乱讲~~)

    多项式 多项式乘法 FFT,NTT,MTT不是前置知识吗?随便学一下就好了(虽然我到现在还是不会MTT,exlucas也不会用) FTT总结 NTT总结 泰勒展开 如果一个多项式\(f(x)\)在\( ...

  4. 201621123018《Java程序设计》第7周学习报告

    1. 本周学习总结 1.1 思维导图:Java图形界面总结 2.书面作业 1. GUI中的事件处理 1.1 写出事件处理模型中最重要的几个关键词. 事件.事件源. 事件监听器.事件处理方法 1.2 任 ...

  5. 关于SpringBoot开发微信模板推送

    在这里演示一下微信的模板消息推送: 这里使用微信测试号 来演示: 先看下效果吧: 1.首先需要申请一个  微信测试号   https://mp.weixin.qq.com/wiki?t=resourc ...

  6. [CTSC2008]网络管理(整体二分+树剖+树状数组)

    一道经典的带修改树链第 \(k\) 大的问题. 我只想出三个 \(\log\) 的解法... 整体二分+树剖+树状数组. 那不是暴力随便踩的吗??? 不过跑得挺快的. \(Code\ Below:\) ...

  7. PHP eval函数

    代码: eval("echo'hello world';"); 上边代码等同于下边的代码: echo"hello world"; 在浏览器中都输出:hello ...

  8. java 简单认识移位运算符和位运算符

    移位运算符和位运算符本质上都是操作二进制位,因为计算机存储的是二进制数据,运算效率相对较高. 移位运算符:把整数的二进制位进行左移或右移 .左移一位,相当于这个数乘以2, 右移一位,相当于这个数除以2 ...

  9. Eclipse连接MuMu模拟器 方便 测试 查日志

    Eclipse连接MuMu模拟器 方便 测试 查日志 问题由来 真机测试麻烦(首先你得拿一部手机,然后在用数据线连接电脑和手机...) 解决流程 确保打开MuMu模拟器和Eclipse的DDMS功能 ...

  10. 【sping揭秘】11、Java 平台上的AOP实现机制

    动态代理 Jdk1.3只有引入的动态代理机制,可以再运行期间,为相应的接口(必须得有接口)动态生成对应的代理对象 基于以上问题,我们可以将横切关注点逻辑封装到动态代理的invocationhandle ...