取石子游戏

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 2872    Accepted Submission(s): 1420

Problem Description
有两堆石子,数量任意,可以不同。游戏开始由两个人轮流取石子。游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子;二是可以在两堆中同时取走相同数量的石子。最后把石子全部取完者为胜者。现在给出初始的两堆石子的数目,如果轮到你先取,假设双方都采取最好的策略,问最后你是胜者还是败者。
 
Input
输入包含若干行,表示若干种石子的初始情况,其中每一行包含两个非负整数a和b,表示两堆石子的数目,a和b都不大于1,000,000,000。
 
Output
输出对应也有若干行,每行包含一个数字1或0,如果最后你是胜者,则为1,反之,则为0。
 
Sample Input
2 1
8 4
4 7
 
Sample Output
0
1
0

只是我第一道博弈题,这个是威佐夫博弈

所谓威佐夫博弈,是ACM题中常见的组合游戏中的一种,大致上是这样的:
有两堆石子,不妨先认为一堆有 10,另一堆有 15 个,双方轮流取走一些石子,合法的取法有如下两种:
1、在一堆石子中取走任意多颗;
2、在两堆石子中取走相同多的任意颗;
约定取走最后一颗石子的人为赢家,求必胜策略。

两堆石头地位是一样的,我们用余下的石子数(a,b)来表示状态,并画在平面直角坐标系上。

和前面类似,(0,0)肯定是 P 态,又叫必败态。(0,k),(k,0),(k,k)系列的节点肯定不是 P 态,而是必胜态,你面对这样的局面一定会胜,只要按照规则取一次就可以了。再看 y = x 上方未被划去的格点,(1,2)是 P 态。k > 2 时,(1,k)不是 P 态,比如你要是面对(1,3)的局面,你是有可能赢的。同理,(k,2),(1 + k, 2 + k)也不是 P 态,划去这些点以及它们的对称点,然后再找出 y = x 上方剩余的点,你会发现(3,5)是一个 P 态,如此下去,如果我们只找出 a ≤ b 的 P 态,则它们是(0,0),(1,2),(3,5),(4,7),(6,10)……它们有什么规律吗?

忽略(0,0),很快会发现对于第 i 个 P 态的 a,a = i * (sqrt(5) + 1)/2 然后取整;而 b = a + i。居然和黄金分割点扯上了关系。
前几个必败点如下:(0,0),(1,2),(3,5),(4,7),(6,10),(8,13)……可以发现,对于第k个必败点(m(k),n(k))来说,m(k)是前面没有出现过的最小自然数,n(k)=m(k)+k。
判断一个点是不是必败点的公式与黄金分割有关(我无法给出严格的数学证明,谁能给出严格的数学证明记得告诉我),为:
m(k) = k * (1 + sqrt(5))/2
n(k) = m(k) + k;

#include<iostream>//用G++交,
#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std; int main()
{
int n,m,k,t;
while(scanf("%d%d",&n,&m )==)
{
if(n<m)//交换n,m的值。使n>m ;
{
n^=m;
m^=n;
n^=m;
}
k=n-m;
t=k*(+sqrt( ))/;
if(t==m)
printf("0\n");
else
printf("1\n");
}
return ;
}

取石子游戏(hdu1527 博弈)的更多相关文章

  1. HDU 2516 取石子游戏(FIB博弈)

    取石子游戏 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submi ...

  2. 取石子游戏 BZOJ1874 博弈

    小H和小Z正在玩一个取石子游戏. 取石子游戏的规则是这样的,每个人每次可以从一堆石子中取出若干个石子, 每次取石子的个数有限制,谁不能取石子时就会输掉游戏. 小H先进行操作,他想问你他是否有必胜策略, ...

  3. 【BZOJ1413】取石子游戏(博弈,区间DP)

    题意:在研究过Nim游戏及各种变种之后,Orez又发现了一种全新的取石子游戏,这个游戏是这样的: 有n堆石子,将这n堆石子摆成一排.游戏由两个人进行,两人轮流操作,每次操作者都可以从最左或最右的一堆中 ...

  4. hdu 2516 取石子游戏 (Fibonacci博弈)

    取石子游戏 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submi ...

  5. hdu1527取石子游戏(威佐夫博弈)

    取石子游戏 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submi ...

  6. hdu1527取石子游戏---(威佐夫博弈)

    感谢 http://www.cnblogs.com/yuyixingkong/p/3362476.html 取石子游戏 Time Limit: 2000/1000 MS (Java/Others)   ...

  7. 【洛谷2252&HDU1527】取石子游戏(博弈论)

    题面 HDU1527 取石子游戏 洛谷2252 取石子游戏 题解 裸的威佐夫博弈 #include<iostream> #include<cmath> using namesp ...

  8. HDU 2516 取石子游戏(斐波那契博弈)

    取石子游戏 Time Limit: 2000/1000 MS(Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submissi ...

  9. POJ.1067 取石子游戏 (博弈论 威佐夫博弈)

    POJ.1067 取石子游戏 (博弈论 威佐夫博弈) 题意分析 简单的威佐夫博弈 博弈论快速入门 代码总览 #include <cstdio> #include <cmath> ...

随机推荐

  1. TmsHttpClientUtil

    package com.sprucetec.tms.utils; import java.io.IOException;import java.security.GeneralSecurityExce ...

  2. GoLang学习控制语句之if/else

    if语句 if 是用于测试某个条件(布尔型或逻辑型)的语句,如果该条件成立,则会执行 if 后由大括号括起来的代码块,否则就忽略该代码块继续执行后续的代码. if condition { // do ...

  3. log4j的日志级别(ssm中log4j的配置)

    log4j定义了8个级别的log(除去OFF和ALL,可以说分为6个级别),优先级从高到低依次为:OFF.FATAL.ERROR.WARN.INFO.DEBUG.TRACE. ALL. 1. ALL ...

  4. python3模块: requests

    Python标准库中提供了:urllib等模块以供Http请求,但是,它的 API 太渣了.它是为另一个时代.另一个互联网所创建的.它需要巨量的工作,甚至包括各种方法覆盖,来完成最简单的任务. 发送G ...

  5. [Umbraco] DocumentType设计指南

    1. 命名规则 1.1. 文档类型(DocumentType)命名规则 图 1. Document Type命名示例 名称(Name)   采用帕斯卡命名法 如:TextPage 别名(Alias)  ...

  6. numpy.random.randn()与numpy.random.rand()的区别(转)

    numpy中有一些常用的用来产生随机数的函数,randn()和rand()就属于这其中. numpy.random.randn(d0, d1, …, dn)是从标准正态分布中返回一个或多个样本值. n ...

  7. 剑指offer二十之包含min函数的栈

    一.题目 定义栈的数据结构,请在该类型中实现一个能够得到栈最小元素的min函数. 二.思路 用一个栈dataStack保存数据,用另外一个栈minStack保存依次入栈最小的数.每次元素存入minSt ...

  8. 阿里巴巴Java开发规范---个人总结

    一.编程规约 (一) 命名规约 1. [强制]所有编程相关命名均不能以下划线或美元符号开始,也不能以下划线或美元符号结束. 反例: _name / __name / $Object / name_ / ...

  9. C#委托和事件例析

    我是对Java了解相对较多,而对C#则是因工作需要才去看了一下,C#跟Java在语法上非常相似,而最初让我比较困惑的就是委托.事件部分,相信大多数初学者也有类似的困惑.经过跟Java的对比学习,发现这 ...

  10. 【Canal源码分析】TableMetaTSDB

    这是Canal在新版本引入的一个内容,主要是为了解决由于历史的DDL导致表结构与现有表结构不一致,导致的同步失败的问题.采用的是Druid和Fastsql,来记录表结构到DB中,如果需要进行回滚时,得 ...