Party

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 6682    Accepted Submission(s): 2194

Problem Description

有n对夫妻被邀请参加一个聚会,因为场地的问题,每对夫妻中只有1人可以列席。在2n 个人中,某些人之间有着很大的矛盾(当然夫妻之间是没有矛盾的),有矛盾的2个人是不会同时出现在聚会上的。有没有可能会有n 个人同时列席?
 

Input

n: 表示有n对夫妻被邀请 (n<= 1000)
m: 表示有m 对矛盾关系 ( m < (n - 1) * (n -1))

在接下来的m行中,每行会有4个数字,分别是 A1,A2,C1,C2 
A1,A2分别表示是夫妻的编号 
C1,C2 表示是妻子还是丈夫 ,0表示妻子 ,1是丈夫
夫妻编号从 0 到 n -1 

 

Output

如果存在一种情况 则输出YES 
否则输出 NO 
 

Sample Input

2
1
0 1 1 1
 

Sample Output

YES
 

Source

 
令夫为a,妻为a非
有矛盾的夫妻之间连边,不能出现在同一个强连通分量中。
 //2017-08-26
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <vector> using namespace std; const int N = ;
const int M = N*N;
int head[N], rhead[N], tot, rtot;
struct Edge{
int to, next;
}edge[M], redge[M]; void init(){
tot = ;
rtot = ;
memset(head, -, sizeof(head));
memset(rhead, -, sizeof(rhead));
} void add_edge(int u, int v){
edge[tot].to = v;
edge[tot].next = head[u];
head[u] = tot++; redge[rtot].to = u;
redge[rtot].next = rhead[v];
rhead[v] = rtot++;
} vector<int> vs;//后序遍历顺序的顶点列表
bool vis[N];
int cmp[N];//所属强连通分量的拓扑序 //input: u 顶点
//output: vs 后序遍历顺序的顶点列表
void dfs(int u){
vis[u] = true;
for(int i = head[u]; i != -; i = edge[i].next){
int v = edge[i].to;
if(!vis[v])
dfs(v);
}
vs.push_back(u);
} //input: u 顶点编号; k 拓扑序号
//output: cmp[] 强连通分量拓扑序
void rdfs(int u, int k){
vis[u] = true;
cmp[u] = k;
for(int i = rhead[u]; i != -; i = redge[i].next){
int v = redge[i].to;
if(!vis[v])
rdfs(v, k);
}
} //Strongly Connected Component 强连通分量
//input: n 顶点个数
//output: k 强连通分量数;
int scc(int n){
memset(vis, , sizeof(vis));
vs.clear();
for(int u = ; u < n; u++)
if(!vis[u])
dfs(u);
int k = ;
memset(vis, , sizeof(vis));
for(int i = vs.size()-; i >= ; i--)
if(!vis[vs[i]])
rdfs(vs[i], k++);
return k;
} void solve(int n){
for(int i = ; i < n; i++){
if(cmp[i] == cmp[i+n]){//a和NOT a在同一个强连通分量中,布尔方程无解
cout<<"NO"<<endl;
return;
}
}
cout<<"YES"<<endl;//布尔方程有解
return;
} int main()
{
std::ios::sync_with_stdio(false);
//freopen("inputA.txt", "r", stdin);
int n, m;
while(cin>>n>>m){
init();
int u, v, a, b;
for(int i = ; i < m; i++){
cin>>u>>v>>a>>b;
if(a == && b == ){// u && v
add_edge(u+n, v);// NOT u -> v
add_edge(v+n, u);// NOT v -> u
}else if(a == && b == ){// u && NOT v
add_edge(u+n, v+n);// NOT u -> NOT v
add_edge(v, u);// v -> u
}else if(a == && b == ){// NOT u && v
add_edge(u, v);// u -> v
add_edge(v+n, u+n);// NOT v -> NOT u
}else if(a == && b == ){// NOT u && NOT v
add_edge(u, v+n);// u -> NOT v
add_edge(v, u+n);// v -> NOT u
}
}
scc(n<<);
solve(n);
} return ;
}

HDU3062(2-SAT)的更多相关文章

  1. POJ 3678 Katu Puzzle(2 - SAT) - from lanshui_Yang

    Description Katu Puzzle is presented as a directed graph G(V, E) with each edge e(a, b) labeled by a ...

  2. 学习笔记(two sat)

    关于two sat算法 两篇很好的论文由对称性解2-SAT问题(伍昱), 赵爽 2-sat解法浅析(pdf). 一些题目的题解 poj 3207 poj 3678 poj 3683 poj 3648 ...

  3. Katu Puzzle POJ - 3678 (2 - sat)

    有N个变量X1X1~XNXN,每个变量的可能取值为0或1. 给定M个算式,每个算式形如 XaopXb=cXaopXb=c,其中 a,b 是变量编号,c 是数字0或1,op 是 and,or,xor 三 ...

  4. LA 3211 飞机调度(2—SAT)

    https://vjudge.net/problem/UVALive-3211 题意: 有n架飞机需要着陆,每架飞机都可以选择“早着陆”和“晚着陆”两种方式之一,且必须选择一种,第i架飞机的早着陆时间 ...

  5. spring定时任务详解(@Scheduled注解)( 转 李秀才的博客 )

    在springMVC里使用spring的定时任务非常的简单,如下: (一)在xml里加入task的命名空间 xmlns:task="http://www.springframework.or ...

  6. MongoDB 聚合管道(Aggregation Pipeline)

    管道概念 POSIX多线程的使用方式中, 有一种很重要的方式-----流水线(亦称为"管道")方式,"数据元素"流串行地被一组线程按顺序执行.它的使用架构可参考 ...

  7. mysql触发器,答题记录表同步教学跟踪(用户列表)

    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAABVQAAAOOCAIAAABgEw4AAAAgAElEQVR4nOy92VcT27r/zX+xLtflvt

  8. Linux版Matlab R2015b的bug——脚本运行的陷阱(未解决)

    0 系统+软件版本 系统:CentOS 6.7 x64, 内核 2.6.32-573.el6.x86_64软件:Matlab R2015b(包括威锋网和东北大学ipv6下载的资源,都测试过) 1 脚本 ...

  9. Quartz.net(调度框架) 使用Mysql作为存储

    最近公司的做的项目中涉及到配置任务地址然后按照配置去目标地址提取相关的数据,所以今天上午在Internet上查看有关定时任务(调度任务)的相关信息,筛选半天然后查找到Quartz.net. Quart ...

  10. mysql 函数编程大全(持续更新)

    insert ignore insert ignore表示,如果中已经存在相同的记录,则忽略当前新数据 如果您使用一个例如“SET col_name = col_name + 1”的赋值,则对位于右侧 ...

随机推荐

  1. 16_python_面向对象

    一.面向对象和面向过程的区别          1.面向对象:一切以对象为中心.有相同属性和动作的结合体叫做对           优点:易维护.易复用.易扩展,由于面向对象有封装.继承.多态性的特性 ...

  2. 装饰者模式&数据库连接池原理

    装饰者模式: 我是一个没有感情的杀手 在复习到自建数据库连接池的时候有点蒙了,再次翻看视频整理如下:(装饰者模式下自建数据库连接池修改close功能为 回收连接对象) 自备材料:数据库连接对象的获取的 ...

  3. redis windows版本下载地址(不用hm提供的)

    https://github.com/MicrosoftArchive/redis/releases

  4. USACO December 铂金Maxflow

    USACO 2015 December Contest, Platinum Problem 1. Max Flow Farmer John has installed a new system of ...

  5. 关于 IPv6

    http://test-ipv6.com/ http://bbs.chinaunix.net/thread-1799798-1-1.html

  6. Yii2 Apache + Nginx 路由重写

    一.什么是路由重写 原本的HTTP访问地址: www.test.com/index.php?r=post/view&id=100 表示这个请求将由PostController 的 action ...

  7. VS2017新建视图中文乱码解决办法

    问题:VS2017 ASP.NET Core 新建视频默认为ASNI编码格式 解决办法 1:直接将视图页面通过记事本打开,然后另存为UTF-8解决. 2:安装扩展TextTools解决视图文件编码问题 ...

  8. Celery -- 分布式任务队列 及实例

    Celery 使用场景及实例 Celery介绍和基本使用 在项目中如何使用celery 启用多个workers Celery 定时任务 与django结合 通过django配置celery perio ...

  9. CentOS7下搭建FastDfs(V5.11)+Keepalived分布式集群部署

    FastDfs介绍 http://kb.cnblogs.com/page/82280/ 1.准备 系统 CentOS7 最小化安装. #VIP虚拟IP 10.1.6.218 #Keepalived 1 ...

  10. windows cmd窗口提示“telnet”命令不能内部或外部命令,也不是可运行的程序

    windows cmd窗口提示“telnet”命令不能内部或外部命令,也不是可运行的程序 原因:C:\Windows\System32目录下没有telnet.exe,path系统变量的值包含了C:\W ...