在  https://www.cnblogs.com/xiandedanteng/p/12677688.html 中我列举了三种求中值方案,其中日本人MICK的做法因为不适用于二百万结果集而放弃,取而代之是新方案一。

新方案一:

经过思考后我又得出了一种中值的新解法,那就是利用排序后正向序列和反向序列交叉点为中值区的原理,如果两个序列相减小于等于一则求所在区域的均值即可。

SQL:

select avg(a.salary) from
(select salary,dense_rank() over (order by salary asc) as seq,dense_rank() over (order by salary desc) as revseq from tb_employee order by salary) a where abs(a.seq-a.revseq)<=1

解释计划:

SQL> select avg(a.salary) from
2 (select salary,dense_rank() over (order by salary asc) as seq,dense_rank() over (order by salary desc) as revseq from tb_employee order by salary) a where abs(a.seq-a.revseq)<=1;
已用时间: 00: 00: 00.00 执行计划
----------------------------------------------------------
Plan hash value: 9035349 ---------------------------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes |TempSpc| Cost (%CPU)| Time |
---------------------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 1 | 39 | | 8850 (2)| 00:01:47 |
| 1 | SORT AGGREGATE | | 1 | 39 | | | |
|* 2 | VIEW | | 2000K| 74M| | 8850 (2)| 00:01:47 |
| 3 | WINDOW SORT | | 2000K| 7812K| 22M| 8850 (2)| 00:01:47 |
| 4 | WINDOW SORT | | 2000K| 7812K| 22M| 8850 (2)| 00:01:47 |
| 5 | TABLE ACCESS FULL| TB_EMPLOYEE | 2000K| 7812K| | 3045 (2)| 00:00:37 |
--------------------------------------------------------------------------------------------- Predicate Information (identified by operation id):
--------------------------------------------------- 2 - filter(ABS("A"."SEQ"-"A"."REVSEQ")<=1)

从Cost看是目前最快的。

执行时间:

SQL> select avg(a.salary) from
2 (select salary,dense_rank() over (order by salary asc) as seq,dense_rank() over (order by salary desc) as revseq from tb_employee order by salary) a where abs(a.seq-a.revseq)<=1; AVG(A.SALARY)
-------------
5500 已用时间: 00: 00: 02.46

从运行时间上看排第二。

经局部优化后两种方案SQL如下:

原有方案二:

select avg(b.salary) from
(select a.salary,abs(a.seq-a.revseq) as diff from (select id,salary,dense_rank() over (order by salary asc) as seq,dense_rank() over (order by salary desc) as revseq from tb_employee order by salary) a ) b
where b.diff=(select min(c.diff) from
(select abs(a.seq-a.revseq) as diff from (select dense_rank() over (order by salary asc) as seq,dense_rank() over (order by salary desc) as revseq from tb_employee order by salary) a ) c)

解释计划:

SQL> select avg(b.salary) from
2 (select a.salary,abs(a.seq-a.revseq) as diff from (select id,salary,dense_rank() over (order by salary asc) as seq,dense_rank() over (order by salary desc) as revseq from tb_employee order by salary) a ) b
3 where b.diff=(select min(c.diff) from
4 (select abs(a.seq-a.revseq) as diff from (select dense_rank() over (order by salary asc) as seq,dense_rank() over (order by salary desc) as revseq from tb_employee order by salary) a ) c);
已用时间: 00: 00: 00.00 执行计划
----------------------------------------------------------
Plan hash value: 3874635296 -----------------------------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes |TempSpc| Cost (%CPU)| Time |
-----------------------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 1 | 39 | | 19969 (2)| 00:04:00 |
| 1 | SORT AGGREGATE | | 1 | 39 | | | |
|* 2 | VIEW | | 2000K| 74M| | 11119 (2)| 00:02:14 |
| 3 | WINDOW SORT | | 2000K| 19M| 38M| 11119 (2)| 00:02:14 |
| 4 | WINDOW SORT | | 2000K| 19M| 38M| 11119 (2)| 00:02:14 |
| 5 | TABLE ACCESS FULL | TB_EMPLOYEE | 2000K| 19M| | 3045 (2)| 00:00:37 |
| 6 | SORT AGGREGATE | | 1 | 26 | | | |
| 7 | VIEW | | 2000K| 49M| | 8850 (2)| 00:01:47 |
| 8 | WINDOW SORT | | 2000K| 7812K| 22M| 8850 (2)| 00:01:47 |
| 9 | WINDOW SORT | | 2000K| 7812K| 22M| 8850 (2)| 00:01:47 |
| 10 | TABLE ACCESS FULL| TB_EMPLOYEE | 2000K| 7812K| | 3045 (2)| 00:00:37 |
----------------------------------------------------------------------------------------------- Predicate Information (identified by operation id):
--------------------------------------------------- 2 - filter(ABS("A"."SEQ"-"A"."REVSEQ")= (SELECT MIN(ABS("A"."SEQ"-"A"."REVSEQ"))
FROM (SELECT DENSE_RANK() OVER ( ORDER BY "SALARY") "SEQ",DENSE_RANK() OVER ( ORDER
BY INTERNAL_FUNCTION("SALARY") DESC ) "REVSEQ" FROM "TB_EMPLOYEE" "TB_EMPLOYEE" ORDER
BY "SALARY") "A"))

执行时间:

SQL> select avg(b.salary) from
2 (select a.salary,abs(a.seq-a.revseq) as diff from (select id,salary,dense_rank() over (order by salary asc) as seq,dense_rank() over (order by salary desc) as revseq from tb_employee order by salary) a ) b
3 where b.diff=(select min(c.diff) from
4 (select abs(a.seq-a.revseq) as diff from (select dense_rank() over (order by salary asc) as seq,dense_rank() over (order by salary desc) as revseq from tb_employee order by salary) a ) c);

AVG(B.SALARY)
-------------
5500

已用时间: 00: 00: 04.56

原有方案三:

select avg(a.salary) from
(select
salary,row_number() over (order by salary asc) as seq,row_number() over (order by salary desc) as revseq,(select ceil(count(*)/2) from tb_employee) as ceil
from tb_employee) a
where a.seq=a.ceil or a.revseq=a.ceil

解释计划:

SQL> select avg(a.salary) from
2 (select
3 salary,row_number() over (order by salary asc) as seq,row_number() over (order by salary desc) as revseq,(select ceil(count(*)/2) from tb_employee) as ceil
4 from tb_employee) a
5 where a.seq=a.ceil or a.revseq=a.ceil;
已用时间: 00: 00: 00.00 执行计划
----------------------------------------------------------
Plan hash value: 3541675306 -----------------------------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes |TempSpc| Cost (%CPU)| Time |
-----------------------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 1 | 52 | | 14656 (3)| 00:02:56 |
| 1 | SORT AGGREGATE | | 1 | 52 | | | |
| 2 | SORT AGGREGATE | | 1 | | | | |
| 3 | INDEX FAST FULL SCAN| SYS_C0012264 | 2000K| | | 1474 (2)| 00:00:18 |
|* 4 | VIEW | | 2000K| 99M| | 14656 (3)| 00:02:56 |
| 5 | WINDOW SORT | | 2000K| 7812K| 22M| 14656 (3)| 00:02:56 |
| 6 | WINDOW SORT | | 2000K| 7812K| 22M| 14656 (3)| 00:02:56 |
| 7 | TABLE ACCESS FULL | TB_EMPLOYEE | 2000K| 7812K| | 3045 (2)| 00:00:37 |
----------------------------------------------------------------------------------------------- Predicate Information (identified by operation id):
--------------------------------------------------- 4 - filter("A"."SEQ"="A"."CEIL" OR "A"."REVSEQ"="A"."CEIL")

消耗时间:

SQL> ;
1 select avg(b.salary) from
2 (select
3 salary,row_number() over (order by salary asc) as seq,row_number() over (order by salary desc) as revseq,(select ceil(count(*)/2) from tb_employee) as ceil
4 - filter("A"."SEQ"="A"."CEIL" OR "A"."REVSEQ"="A"."CEIL");
5* where a.seq=a.ceil or a.revseq=a.ceil
SQL> select avg(a.salary) from
2 (select
3 salary,row_number() over (order by salary asc) as seq,row_number() over (order by salary desc) as revseq,(select ceil(count(*)/2) from tb_employee) as ceil
4 from tb_employee) a
5 where a.seq=a.ceil or a.revseq=a.ceil; AVG(A.SALARY)
-------------
5498 已用时间: 00: 00: 01.98

而单查表数量的解释计划大家也参考看一下:

SQL> select count(*) from tb_employee;
已用时间: 00: 00: 00.01 执行计划
----------------------------------------------------------
Plan hash value: 2866911338 ------------------------------------------------------------------------------
| Id | Operation | Name | Rows | Cost (%CPU)| Time |
------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 1 | 1474 (2)| 00:00:18 |
| 1 | SORT AGGREGATE | | 1 | | |
| 2 | INDEX FAST FULL SCAN| SYS_C0012264 | 2000K| 1474 (2)| 00:00:18 |
------------------------------------------------------------------------------

最后的大比拼表格:

方案 Cost 耗时
新方案一 8850 2.46秒
原有方案二 19946 4.56秒
原有方案三 14646 1.98

截至目前,方案三以较高效率胜出,新方案一其实也不错,原有方案三排第三位。

--2020年4月12日--

新三种求数列中值SQL之效率再比拼的更多相关文章

  1. Python max()方法扩展:求字典中值最大的键

    重要的应该写在前面[捂脸]   场景一:仅求最大值对应的键,代码如下: >>> dic = {'A':4, 'B':2, 'C':3} >>> max_key = ...

  2. C#中??和?分别是什么意思? 在ASP.NET开发中一些单词的标准缩写 C#SESSION丢失问题的解决办法 在C#中INTERFACE与ABSTRACT CLASS的区别 SQL命令语句小技巧 JQUERY判断CHECKBOX是否选中三种方法 JS中!=、==、!==、===的用法和区别 在对象比较中,对象相等和对象一致分别指的是什么?

    C#中??和?分别是什么意思? 在C#中??和?分别是什么意思? 1. 可空类型修饰符(?):引用类型可以使用空引用表示一个不存在的值,而值类型通常不能表示为空.例如:string str=null; ...

  3. 【算法随记三】小半径中值模糊的急速实现(16MB图7.5ms实现) + Photoshop中蒙尘和划痕算法解读。

    在本人的博客里,分享了有关中值模糊的O(1)算法,详见:任意半径中值滤波(扩展至百分比滤波器)O(1)时间复杂度算法的原理.实现及效果 ,这里的算法的执行时间和参数是无关的.整体来说,虽然速度也很快, ...

  4. java数组中的三种排序方法中的冒泡排序方法

    我记得我大学学java的时候,怎么就是搞不明白这三种排序方法,也一直不会,现在我有发过来学习下这三种方法并记录下来. 首先说说冒泡排序方法:冒泡排序方法就是把数组中的每一个元素进行比较,如果第i个元素 ...

  5. Python 列表(List) 的三种遍历(序号和值)方法

    三种遍历列表里面序号和值的方法: 最近学习python这门语言,感觉到其对自己的工作效率有很大的提升,特在情人节这一天写下了这篇博客,下面废话不多说,直接贴代码 #!/usr/bin/env pyth ...

  6. [ 原创 ]学习笔记-三种向ListView中填充简单文本的方法

    Android 中ListView是很重要的一块内容 掌握ListView的基本用法 对学习安卓起着举足轻重的作用 今天就介绍一下三种向ListView 填充简单文本的方法 填充其他数据类型的用法之后 ...

  7. 求数列中第K大的数

    原创 利用到快速排序的思想,快速排序思想:https://www.cnblogs.com/chiweiming/p/9188984.html array代表存放数列的数组,K代表第K大的数,mid代表 ...

  8. C#三种判断数据库中取出的字段值是否为空(NULL) 的方法

    操作数据库,需要判断返回的字段值是否为空,收集了3种方法供参考 1 通过System.DBNull判断,网上大部分都使用这个方法. DataTable dt;                     ...

  9. Spring之jdbcTemplate:查询的三种方式(单个值、单个对象、对象集合)

    JdbcTemplateDemo2.java package helloworld.jdbcTemplate; import org.springframework.jdbc.core.JdbcTem ...

随机推荐

  1. Docker 启动 OpenResty

    Docker 启动 OpenResty OpenResty 是一个基于 Nginx 与 Lua 的高性能 Web 平台,其内部集成了大量精良的 Lua 库.第三方模块以及大多数的依赖项.用于方便地搭建 ...

  2. Django-model模型中Field属性类别及选项

    参考:[Django官方文档] Django所使用模型中一些属性类别及选项(Field and Options) 1. Models Field 各种类型分别对应数据库中的各种类型,这是Django对 ...

  3. vue.js中 v-for,v-on,v-model,结合应用案例---记事本

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...

  4. Android学习进程 Java引用 Rxjava MVP

    第一份Android开发工作,以便于记录学习进程 Java引用 Java没有显式的使用指针,但对象的访问仍是通过指针实现的,所以直接对象之间的赋值会导致存储空间是数据的改变,如设置两个对象,其中对象一 ...

  5. Object.prototype.__proto__, [[prototype]] 和 prototype

    Object.prototype.__proto__ , [[prototype]] 和 prototype Object.prototype.__proto__ 是什么? __proto__ 是一个 ...

  6. Uni-app从入门到实战

    前言 uni-app是一个使用vue.js开发跨平台应用的前端框架,开发者只需要编写一套代码,便可以发布到IOS.Android和微信小程序等多个平台.所以我打算学习下这个框架,快速浏览了一遍官网之后 ...

  7. Mybatis中List传值

    Mybatis遇到List传值时常用方法. 1. List<E>,E为基本数据类型和String Mapper类文件: List<User> selectByIds(List& ...

  8. xpath和css选择器对比

    基本语法对比 都可以在html中提取内容,但xpath可以提取xml的内容.

  9. idea工程在maven projects中显示灰色的解决办法

    原文链接:https://blog.csdn.net/qq_30507287/article/details/83515461 在Mac上使用idea进行开发的过程中,一般在MavenProject中 ...

  10. Java数据结构——双端队列

    双端队列(Deque)双端队列是指允许两端都可以进行入队和出队操作的队列,其元素的逻辑结构仍是线性结构.将队列的两端分别称为前端和后端,两端都可以入队和出队.Deque继承自Queue接口,Deque ...