MapReduce之WritableComparable排序
@
排序概述
- 排序是MapReduce框架中最重要的操作之一。
- Map Task和ReduceTask均会默认对数据按照key进行排序。该操作属于Hadoop的默认行为。任何应用程序中的数据均会被排序,而不管逻辑上是否需要。
- 黑默认排序是按照字典顺序排序,且实现该排序的方法是快速排序。
- 对于
MapTask
,它会将处理的结果暂时放到一个缓冲区中,当缓冲区使用率达到一定阈值后,再对缓冲区中的数据进行一次排序,并将这些有序数据写到磁盘上,而当数据处理完毕后,它会对磁盘上所有文件进行一次合并,以将这些文件合并成一个大的有序文件。 - 对于
ReduceTask
,它从每个MapTak上远程拷贝相应的数据文件,如果文件大小超过一定阑值,则放到磁盘上,否则放到内存中。如果磁盘上文件数目达到一定阈值,则进行一次合并以生成一个更大文件;如果内存中文件大小或者数目超过一定阈值,则进行一次合并后将数据写到磁盘上。当所有数据拷贝完毕后,ReduceTask统一对内存和磁盘上的所有数据进行一次归并排序。 - 排序器:排序器影响的是排序的速度(效率,对什么排序?),QuickSorter
- 比较器:比较器影响的是排序的结果(按照什么规则排序)
获取Mapper输出的key的比较器(源码)
public RawComparator getOutputKeyComparator() {
// 从配置中获取mapreduce.job.output.key.comparator.class的值,必须是RawComparator类型,如果没有配置,默认为null
Class<? extends RawComparator> theClass = getClass(JobContext.KEY_COMPARATOR, null, RawComparator.class);
// 一旦用户配置了此参数,实例化一个用户自定义的比较器实例
if (theClass != null){
return ReflectionUtils.newInstance(theClass, this);
}
//用户没有配置,判断Mapper输出的key的类型是否是WritableComparable的子类,如果不是,就抛异常,如果是,系统会自动为我们提供一个key的比较器
return WritableComparator.get(getMapOutputKeyClass().asSubclass(WritableComparable.class), this);
}
案例实操(区内排序)
需求
对每个手机号按照上行流量和下行流量的总和进行内部排序。
思考
因为Map Task和ReduceTask均会默认对数据按照key进行排序,所以需要把流量总和设置为Key
,手机号等其他内容设置为value
FlowBeanMapper.java
public class FlowBeanMapper extends Mapper<LongWritable, Text, LongWritable, Text>{
private LongWritable out_key=new LongWritable();
private Text out_value=new Text();
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String[] words = value.toString().split("\t");
//封装总流量为key
out_key.set(Long.parseLong(words[3]));//切分后,流量和的下标为3
//封装其他内容为value
out_value.set(words[0]+"\t"+words[1]+"\t"+words[2]);
context.write(out_key, out_value);
}
}
FlowBeanReducer.java
public class FlowBeanReducer extends Reducer<LongWritable, Text, Text, LongWritable>{
@Override
protected void reduce(LongWritable key, Iterable<Text> values,
Reducer<LongWritable, Text, Text, LongWritable>.Context context) throws IOException, InterruptedException {
for (Text value : values) {
context.write(value, key);
}
}
}
FlowBeanDriver.java
public class FlowBeanDriver {
public static void main(String[] args) throws Exception {
Path inputPath=new Path("E:\\mroutput\\flowbean");
Path outputPath=new Path("e:/mroutput/flowbeanSort1");
//作为整个Job的配置
Configuration conf = new Configuration();
//保证输出目录不存在
FileSystem fs=FileSystem.get(conf);
if (fs.exists(outputPath)) {
fs.delete(outputPath, true);
}
// ①创建Job
Job job = Job.getInstance(conf);
// ②设置Job
// 设置Job运行的Mapper,Reducer类型,Mapper,Reducer输出的key-value类型
job.setMapperClass(FlowBeanMapper.class);
job.setReducerClass(FlowBeanReducer.class);
// Job需要根据Mapper和Reducer输出的Key-value类型准备序列化器,通过序列化器对输出的key-value进行序列化和反序列化
// 如果Mapper和Reducer输出的Key-value类型一致,直接设置Job最终的输出类型
//由于Mapper和Reducer输出的Key-value类型不一致(maper输出类型是long-text,而reducer是text-value)
//所以需要额外设定
job.setMapOutputKeyClass(LongWritable.class);
job.setMapOutputValueClass(Text.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(LongWritable.class);
// 设置输入目录和输出目录
FileInputFormat.setInputPaths(job, inputPath);
FileOutputFormat.setOutputPath(job, outputPath);
// 默认升序排,可以设置使用自定义的比较器
//job.setSortComparatorClass(DecreasingComparator.class);
// ③运行Job
job.waitForCompletion(true);
}
}
运行结果(默认升序排)
自定义排序器,使用降序
方法一:自定义类,这个类必须是
RawComparator
类型,通过设置mapreduce.job.output.key.comparator.class
自定义的类的类型。
自定义类时,可以继承WriableComparator
类,也可以实现RawCompartor
调用方法时,先调用RawCompartor. compare(byte[] b1, int s1, int l1, byte[] b2, int s2, int l2)
,再调用RawCompartor.compare()
方法二:定义Mapper输出的key,让key实现
WritableComparable
,实现CompareTo()
MyDescComparator.java
public class MyDescComparator extends WritableComparator{
@Override
public int compare(byte[] b1, int s1, int l1,byte[] b2, int s2, int l2) {
long thisValue = readLong(b1, s1);
long thatValue = readLong(b2, s2);
//这里把第一个-1改成1,把第二个1改成-1,就是降序排
return (thisValue<thatValue ? 1 : (thisValue==thatValue ? 0 : -1));
}
}
运行结果
MapReduce之WritableComparable排序的更多相关文章
- Hadoop(18)-MapReduce框架原理-WritableComparable排序和GroupingComparator分组
1.排序概述 2.排序分类 3.WritableComparable案例 这个文件,是大数据-Hadoop生态(12)-Hadoop序列化和源码追踪的输出文件,可以看到,文件根据key,也就是手机号进 ...
- Hadoop学习笔记—11.MapReduce中的排序和分组
一.写在之前的 1.1 回顾Map阶段四大步骤 首先,我们回顾一下在MapReduce中,排序和分组在哪里被执行: 从上图中可以清楚地看出,在Step1.4也就是第四步中,需要对不同分区中的数据进行排 ...
- Hadoop学习笔记: MapReduce二次排序
本文给出一个实现MapReduce二次排序的例子 package SortTest; import java.io.DataInput; import java.io.DataOutput; impo ...
- (转)MapReduce二次排序
一.概述 MapReduce框架对处理结果的输出会根据key值进行默认的排序,这个默认排序可以满足一部分需求,但是也是十分有限的.在我们实际的需求当中,往往有要对reduce输出结果进行二次排序的需求 ...
- 详细讲解MapReduce二次排序过程
我在15年处理大数据的时候还都是使用MapReduce, 随着时间的推移, 计算工具的发展, 内存越来越便宜, 计算方式也有了极大的改变. 到现在再做大数据开发的好多同学都是直接使用spark, hi ...
- mapreduce数据处理——统计排序
接上篇https://www.cnblogs.com/sengzhao666/p/11850849.html 2.数据处理: ·统计最受欢迎的视频/文章的Top10访问次数 (id) ·按照地市统计最 ...
- mapreduce 实现数子排序
设计思路: 使用mapreduce的默认排序,按照key值进行排序的,如果key为封装int的IntWritable类型,那么MapReduce按照数字大小对key排序,如果key为封装为String ...
- MapReduce二次排序
默认情况下,Map 输出的结果会对 Key 进行默认的排序,但是有时候需要对 Key 排序的同时再对 Value 进行排序,这时候就要用到二次排序了.下面让我们来介绍一下什么是二次排序. 二次排序原理 ...
- Hadoop MapReduce 二次排序原理及其应用
关于二次排序主要涉及到这么几个东西: 在0.20.0 以前使用的是 setPartitionerClass setOutputkeyComparatorClass setOutputValueGrou ...
随机推荐
- css实现1px 像素线条_解决移动端1px线条的显示方式
使用CSS 绘制出 1px 的边框,在移动端上渲染的效果会出现不同,部分手机发现1px 线条变胖了,这篇文章整理2种方式实现1px 像素线条. 1.利用box-shadow + transform & ...
- 关于前端数据&逻辑的思考
最近重构了一个项目,一个基于redux模型的react-native项目,目标是在混乱的代码中梳理出一个清晰的结构来,为了实现这个目标,首先需要对项目的结构做分层处理,将各个逻辑分离出来,这里我是基于 ...
- 常见的H5移动端Web页面Bug问题解决方案总汇
解决jquery ajax调用远程接口的跨域问题 首先,接口必须允许远程调用.这是后端或者运维的事情.你必须保证你得到的一个接口是允许远程调用的.否则,就没啥了. $.ajax({ type:'get ...
- 有点愧疚,今天把unity官方骗了...
今天下午2点,突然给我发了一封邮件说我违规: Unity Technologies Hello, Your Account: *@*.net has been suspended and you ca ...
- Vue防止按钮重复提交
参考了:https://www.cnblogs.com/adbg/p/11271237.html 方法:使用全局指令的方式. 一.新建指令 1.我们首先新建一个js文件,例如起名为plugins.js ...
- day61 django入门(2)
目录 一.数据的查.改.删 1 查 2 改 3 删 二.django orm中如何创建表关系 三.django请求生命周期流程图 四.路由层 1 无名分组 2 有名分组 3 两种分组不能混用,单个可以 ...
- CSRF原理及防御
CSRF原理及防御 CSRF攻击原理 CSRF攻击利用网站对用户的信任,以用户的身份发送请求来执行攻击者所要的操作,比如:转账.发邮件.修改密码.添加用户等. CSRF和XSS一样危害都特别大,只不过 ...
- 数据可视化基础专题(二):Pandas基础(一) excel导入与导出
1.Excel 1.1 Excel导入 read_excel() pandas.read_excel(io, sheet_name=0, header=0, names=None, index_col ...
- How to install chinese input method
在Ubuntu中安装中文输入法确实比较麻烦,特别是英文版的Ubuntu系统 Ubuntu上的输入法主要有小小输入平台(支持拼音/二笔/五笔等),Fcitx,Ibus,Scim等.其中Scim和Ib ...
- js自定义获取浏览器宽高
/** * @description js自定义获取浏览器宽高 * * IE8 和 IE8 以下的浏览器不兼容 * window.innerWidth * window.innerHeight * * ...