LINK:模板莫队二次离线

很早以前学的知识点 不过 很久了忘了。

考虑暴力 :每次莫队更新的时候 尝试更新一个点到一个区间的答案 可以枚举二进制下位数为k的数字 看一下区间内的这种数字有多少个。

不过这样每次移动的复杂度为 C(14,k)的。

考虑 将每次移动操作进行离线 答案进行差分。

那么只需要求出指针移动的变换量即可 由于左端点和右端点的变换量都是nsqrt(n)的

如果直接开空间这么存 空间复杂度nsqrt(n).吃不消。

考虑将一个f(L,[L+1,R])的这种形式的贡献进行前后差分 f(L,1~R)-f(L,[1,L-1]).

这样每次存的都是连续的一堆 离线下来的东西也可以前缀和的时候做 前一步nsqrt(n)。

后一步进行扫描线 nk+nsqrt(n).

很妙的算法。

const int MAXN=100010;
int n,m,k,B,maxx;
int a[MAXN],sum[MAXN],pre[MAXN],v[MAXN];ll ans[MAXN],cc[MAXN];
struct wy{int l,r,id;}t[MAXN];
vector<wy>g[MAXN];
vector<int>p;
inline int cmp(wy a,wy b){return v[a.l]==v[b.l]?a.r<b.r:a.l<b.l;}
int main()
{
freopen("1.in","r",stdin);
get(n);get(m);get(k);
if(k>14)
{
rep(1,m,i)puts("0");
return 0;
}
maxx=16383;
rep(0,maxx,i)
{
sum[i]=sum[i>>1]+(i&1);
if(sum[i]==k)p.pb(i);
}
rep(0,maxx,i)sum[i]=0;
B=(int)sqrt(n*1.0);
rep(1,n,i)
{
get(a[i]);v[i]=(i-1)/B+1;
pre[i-1]=sum[a[i]];
vep(0,p.size(),j)++sum[a[i]^p[j]];
}
rep(1,m,i)t[i]=(wy){read(),read(),i};
sort(t+1,t+1+m,cmp);
int L=1,R=0;
rep(1,m,i)
{
if(L<t[i].l)g[R].pb((wy){L,t[i].l-1,-i});
while(L<t[i].l){ans[i]+=pre[L-1];++L;}
if(L>t[i].l)g[R].pb((wy){t[i].l,L-1,i});
while(L>t[i].l){--L;ans[i]-=pre[L-1];}
if(R<t[i].r)g[L-1].pb((wy){R+1,t[i].r,-i});
while(R<t[i].r){ans[i]+=pre[R];++R;}
if(R>t[i].r)g[L-1].pb((wy){t[i].r+1,R,i});
while(R>t[i].r){ans[i]-=pre[R-1];--R;}
}
rep(0,maxx,i)sum[i]=0;
rep(1,n,i)
{
vep(0,p.size(),j)++sum[a[i]^p[j]];
vep(0,g[i].size(),j)
{
int l=g[i][j].l;int r=g[i][j].r;
int id=g[i][j].id;
rep(l,r,w)
{
int ww=sum[a[w]];
if(k==0&&w<=i)--ww;
if(id<0)ans[-id]-=ww;
else ans[id]+=ww;
}
}
}
rep(1,m,i)ans[i]+=ans[i-1],cc[t[i].id]=ans[i];
rep(1,m,i)putl(cc[i]);
return 0;
}

luogu P4887 模板 莫队二次离线 莫队 离线的更多相关文章

  1. luogu P4887 莫队二次离线

    珂朵莉给了你一个序列$a$,每次查询给一个区间$[l,r]$ 查询$l≤i<j≤r$,且$ai⊕aj$的二进制表示下有$k$个$1$的二元组$(i,j)$的个数.$⊕$是指按位异或. 直接暴力莫 ...

  2. 洛谷 P4887 -【模板】莫队二次离线(第十四分块(前体))(莫队二次离线)

    题面传送门 莫队二次离线 mol ban tea,大概是这道题让我第一次听说有这东西? 首先看到这类数数对的问题可以考虑莫队,记 \(S\) 为二进制下有 \(k\) 个 \(1\) 的数集,我们实时 ...

  3. [Ynoi2019模拟赛]Yuno loves sqrt technology II(二次离线莫队)

    二次离线莫队. 终于懂了 \(lxl\) 大爷发明的二次离线莫队,\(\%\%\%lxl\) 二次离线莫队,顾名思义就是将莫队离线两次.那怎么离线两次呢? 每当我们将 \([l,r]\) 移动右端点到 ...

  4. 洛谷P5398 [Ynoi2018]GOSICK(二次离线莫队)

    题面 传送门 题解 维包一生推 首先请确保您会二次离线莫队 那么我们现在的问题就是怎么转移了,对于\(i\)和前缀\([1,r]\)的贡献,我们拆成\(b_i\)和\(c_i\)两部分,其中\(b_i ...

  5. Luogu P2742 模板-二维凸包

    Luogu P2742 模板-二维凸包 之前写的实在是太蠢了.于是重新写了一个. 用 \(Graham\) 算法求凸包. 注意两个向量 \(a\times b>0\) 的意义是 \(b\) 在 ...

  6. D. Powerful array 离线+莫队算法 给定n个数,m次查询;每次查询[l,r]的权值; 权值计算方法:区间某个数x的个数cnt,那么贡献为cnt*cnt*x; 所有贡献和即为该区间的值;

    D. Powerful array time limit per test seconds memory limit per test megabytes input standard input o ...

  7. LUOGU P4074 [WC2013]糖果公园 (树上带修莫队)

    传送门 解题思路 树上带修莫队,搞了两天..终于开O2+卡常大法贴边过了...bzoj上跑了183s..其实就是把树上莫队和带修莫队结合到一起,首先求出括号序,就是进一次出一次那种的,然后如果求两个点 ...

  8. [luogu P3384] [模板]树链剖分

    [luogu P3384] [模板]树链剖分 题目描述 如题,已知一棵包含N个结点的树(连通且无环),每个节点上包含一个数值,需要支持以下操作: 操作1: 格式: 1 x y z 表示将树从x到y结点 ...

  9. 按照已有的模板打印小票<二> ——调用windows打印机打印 可设置字体样式

    按照已有的模板打印小票<二> ——调用windows打印机打印 可设置字体样式 之前写过一篇文章<按照已有的模板输出一(如发票)>,是关于如何给已有的模板赋值.在项目的实践过程 ...

随机推荐

  1. Redundant Paths 分离的路径【边双连通分量】

    Redundant Paths 分离的路径 题目描述 In order to get from one of the F (1 <= F <= 5,000) grazing fields ...

  2. C++栈(stack)、队列(queue)、链表(list)的常用函数

    C++队列Queue是一种容器适配器,它给予程序员一种先进先出(FIFO)的数据结构.1.back() 返回一个引用,指向最后一个元素2.empty() 如果队列空则返回真3.front() 返回第一 ...

  3. H5软键盘弹起收回(IOS与Android)

    IOS下中,软键盘处于窗口最顶层,与原有的窗口不冲突,所以底部导航条不会被顶起,但是在android下,软键盘与窗口处于同一层,所以当软键盘弹起时,当前窗口缩小,那么窗口内容自然要被挤: 解决办法: ...

  4. ie浏览器不支持多行隐藏显示省略号

    平时在写页面过程中,相信大家都遇到过文本显示多行后用省略号代替的问题,来看看代码: p{ display: -webkit-box; overflow: hidden; text-overflow: ...

  5. Mysql常用sql语句(23)- update 修改数据

    测试必备的Mysql常用sql语句系列 https://www.cnblogs.com/poloyy/category/1683347.html 前言 update 也是DML语句哦(数据操作语言) ...

  6. day45 如何完全删除mysql服务

    卸载mysql之后,mysql的服务无法删除 解决方案 在我们在卸载mysql后会有一些东西没有删除干净,当我们把这些内容清除干净后,服务自然就消失了 步骤一: 如果是默认安装的话 在这三个文件内都有 ...

  7. python os 模块的使用

    1.显示当前文件的绝对路径: os.path.abspath(__file__) 2.显示当前文件父目录的路径 os.path.dirname(os.path.abspath(__file__name ...

  8. java 数据结构(二):java常用类 二 StringBuffer、StringBuilder

    1.String.StringBuffer.StringBuilder三者的对比String:不可变的字符序列:底层使用char[]存储StringBuffer:可变的字符序列:线程安全的,效率低:底 ...

  9. C# - 设计- Struct与Class的选择

    选择Struct的原则 该类型的实例较小且通常为短生存期,或者通常嵌入到其他对象中. 它以逻辑方式表示单个值,类似于基元类型( int .等 double ). 它的实例大小为16字节. 它是不可变的 ...

  10. Guava的两种本地缓存策略

    Guava的两种缓存策略 缓存在很多场景下都需要使用,如果电商网站的商品类别的查询,订单查询,用户基本信息的查询等等,针对这种读多写少的业务,都可以考虑使用到缓存.在一般的缓存系统中,除了分布式缓存, ...