7.12 NOI模拟赛 积性函数求和 数论基础变换 莫比乌斯反演
神题!
一眼powerful number 复习了一下+推半天。
可以发现G函数只能为\(\sum_{d}[d|x]d\)
不断的推 可以发现最后需要求很多块G函数的前缀和 发现只有\(\sqrt(n)\)的复杂度。
于是自闭了。不过这个做法可以跑过\(1e9\) 第二个subtask没有那么严格所以可以跑过 不过我CE了2333...
也没考虑\(min_25\)筛 可能学的不太精通。。
正解是发现 \(f(n)=(p^{k1}+1)(p^{k2}+1)...\)
然后 将其展开 求每个数字对n的贡献 即枚举上述状态的每一项.
那么在求前缀和中i可以被统计到答案中的标志为存在令一个数字j 满足\(i\cdot j\leq n\)且\((i,j)=1\)
那么其实答案为 \(\sum_{i=1}^n\sum_{j=1}^{\frac{n}{i}}[(i,j)=1]i\)
莫比乌斯反演一下可以得到.
\(\sum_{x=1}^n\mu(x)\sum_{i=1}^{\frac{n}{x}}i\frac{n}{i\cdot x^2}\)
这其实就可以做了。
考虑到\(\frac{n}{i\cdot x^2}\)有值 那么显然 \(x\leq \sqrt n\)
且 \(i\leq \frac{n}{x^2}\)
那么上述式子枚举范围可以变一下.\(\sum_{x=1}^{\sqrt n}\mu(x)\sum_{i=1}^{\frac{n}{x^2}}i\frac{n}{i\cdot x^2}\)
左边暴力枚举 右边整除分块。可以证明这样复杂度为\(\sqrt n\cdot logn\)
可能有点卡常 考虑线性筛出 \(d_n\)表示\(\sum_{i=1}^{n}i\frac{n}{i}\)
考虑右边的实际意义 约数和的前缀和 那么只需要筛出每个数字约数和 再前缀和一下即可。
code
//#include<bits\stdc++.h>
#include<iostream>
#include<iomanip>
#include<cstdio>
#include<cstring>
#include<string>
#include<ctime>
#include<cmath>
#include<cctype>
#include<cstdlib>
#include<queue>
#include<deque>
#include<stack>
#include<vector>
#include<algorithm>
#include<utility>
#include<bitset>
#include<set>
#include<map>
#define ll long long
#define db double
#define INF 1000000000000000ll
#define ldb long double
#define pb push_back
#define put_(x) printf("%d ",x);
#define get(x) x=read()
#define gt(x) scanf("%d",&x)
#define gi(x) scanf("%lf",&x)
#define put(x) printf("%d\n",x)
#define putl(x) printf("%lld\n",x)
#define gc(a) scanf("%s",a+1)
#define rep(p,n,i) for(RE int i=p;i<=n;++i)
#define go(x) for(ll i=lin[x],tn=ver[i];i;tn=ver[i=nex[i]])
#define fep(n,p,i) for(RE ll i=n;i>=p;--i)
#define vep(p,n,i) for(RE ll i=p;i<n;++i)
#define pii pair<ll,ll>
#define mk make_pair
#define RE register
#define P 1000000007
#define gf(x) scanf("%lf",&x)
#define pf(x) ((x)*(x))
#define uint unsigned long long
#define ui unsigned
#define EPS 1e-4
#define sq sqrt
#define S second
#define F first
using namespace std;
char buf[1<<15],*fs,*ft;
inline char getc()
{
return (fs==ft&&(ft=(fs=buf)+fread(buf,1,1<<15,stdin),fs==ft))?0:*fs++;
}
inline ll read()
{
RE ll x=0,f=1;RE char ch=getc();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getc();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getc();}
return x*f;
}
const ll MAXN=4000010;
ll n;
int m,mod,top,INV2;
int p[MAXN],mu[MAXN],v[MAXN],g[MAXN],w[MAXN];
inline void prepare()
{
mu[1]=g[1]=1;
rep(2,m,i)
{
if(!v[i])v[i]=p[++top]=i,w[i]=i,mu[i]=-1;
if(w[i]==i)g[i]=(g[i/v[i]]+i)%mod;
else g[i]=(ll)g[i/w[i]]*g[w[i]]%mod;
rep(1,top,j)
{
if(p[j]>m/i)break;
v[p[j]*i]=p[j];
if(v[i]==p[j])
{
w[p[j]*i]=w[i]*p[j];
break;
}
w[p[j]*i]=p[j];mu[p[j]*i]=-mu[i];
}
}
rep(1,m,i)g[i]=(g[i-1]+g[i])%mod;
}
inline int solve(ll n)
{
if(n<=m)return g[n]*2%mod;
if(n>=mod)
{
ll ww,w1;
int ans=0;
for(ll i=1;i<=n;i=ww+1)
{
w1=n/i;ww=n/w1;
ans=(ans+(i+ww)%mod*((ww-i+1)%mod)%mod*(w1%mod))%mod;
}
return ans;
}
else
{
ll ww,w1;
int ans=0;
for(ll i=1;i<=n;i=ww+1)
{
w1=n/i;ww=n/w1;
ans=(ans+(i+ww)*(ww-i+1)%mod*w1)%mod;
}
return ans;
}
}
signed main()
{
freopen("1.in","r",stdin);
get(n);get(mod);m=(int)sqrt(n*1.0);INV2=(1+mod)>>1;
prepare();int ans=0;
rep(1,m,i)if(mu[i])ans=(ans+mu[i]*(ll)i*solve(n/i/i))%mod;
ans=(ans+mod)%mod;put((ll)ans*INV2%mod);return 0;
}
7.12 NOI模拟赛 积性函数求和 数论基础变换 莫比乌斯反演的更多相关文章
- 7.12 NOI模拟赛 生成树 装压dp vector装压
LINK:生成树 这场比赛我打的真失败 T3是比较容易的 却一直刚 那道"数论" 10分其实搜一下全排列. 30分容易想到对边进行装压dp. 不过存在一些细节 可以对于一个连通块的 ...
- 7.12 NOI模拟赛 探险队 期望 博弈 dp 最坏情况下最优策略 可并堆
LINK:探险队 非常难的题目 考试的时候爆零了 完全没有想到到到底怎么做 (当时去刚一道数论题了. 首先考虑清楚一件事情 就是当前是知道整张地图的样子 但是不清楚到底哪条边断了. 所以我们要做的其实 ...
- 【Learning】积性函数前缀和——洲阁筛(min_25写法)
问题描述 洲阁筛解决的问题主要是\(n\)范围较大的积性函数前缀和. 已知一积性函数\(f(i)\),求\(\sum_{i=1}^nf(i)\). \(n\leq10^{12}\). 求解方法 如 ...
- NOI 模拟赛 #2
得分非常惨惨,半个小时写的纯暴力 70 分竟然拿了 rank 1... 如果 OYJason 和 wxjor 在可能会被爆踩吧 嘤 T1 欧拉子图 给一个无向图,如果一个边集的导出子图是一个欧拉回路, ...
- hdu1452 Happy 2004(规律+因子和+积性函数)
Happy 2004 题意:s为2004^x的因子和,求s%29. (题于文末) 知识点: 素因子分解:n = p1 ^ e1 * p2 ^ e2 *..........*pn ^ en 因子 ...
- HDU 1452 Happy 2004 (逆元+快速幂+积性函数)
G - Happy 2004 Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Subm ...
- HDU 1452 Happy 2004(因子和的积性函数)
题目链接 题意 : 给你一个X,让你求出2004的X次方的所有因子之和,然后对29取余. 思路 : 原来这就是积性函数,点这里这里这里,这里讲得很详细. 在非数论的领域,积性函数指所有对于任何a,b都 ...
- HDU1452Happy 2004(高次幂取模+积性函数+逆元)
题目意思:2004^x的所有正因数的和(S)对29求余:输出结果: 原题链接 题目解析:解析参照来源:点击打开链接 因子和 6的因子是1,2,3,6; 6的因子和是s(6)=1+2+3+6=12; 2 ...
- HDU 1452 Happy 2004(因数和+费马小定理+积性函数)
Happy 2004 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total ...
随机推荐
- embedded database (H2, HSQL or Derby), please put it on the classpath
Description: Failed to configure a DataSource: 'url' attribute is not specified and no embedded data ...
- python中获取文件路径的几种方式
# 如果执行文件为E:\aa\bb\aa.py 1.获取当前路径 current_path11 = os.path.abspath(__file__) current_path12 = os.path ...
- node子进程(Child Process)获取硬盘分区
node child_process文档 child_process.exec(command[, options][, callback]) command <string> The ...
- 数据可视化之powerBI入门(五)PowerQuery,支持从多种源导入数据
PowerBI的强大绝不仅是最后生成炫酷的可视化报告,她在第一步数据获取上就显示出了强大的威力,利用Power Query 的强大数据处理功能,几乎可以从任何来源.任何结构.任何形式上获取数据 htt ...
- nginx配置使用, 入门到实践
1. 本文做自己学习配置使用, 转自: https://mp.weixin.qq.com/s?__biz=Mzg2MjEwMjI1Mg%3D%3D&chksm=ce0dae4df97a275b ...
- 最大熵原理(The Maximum Entropy Principle)
https://wanghuaishi.wordpress.com/2017/02/21/%E5%9B%BE%E8%A7%A3%E6%9C%80%E5%A4%A7%E7%86%B5%E5%8E%9F% ...
- Python之 爬虫(二十三)Scrapy分布式部署
按照上一篇文章中我们将代码放到远程主机是通过拷贝或者git的方式,但是如果考虑到我们又多台远程主机的情况,这种方式就比较麻烦,那有没有好用的方法呢?这里其实可以通过scrapyd,下面是这个scrap ...
- MySQL基础架构分析
文章已托管到GitHub,大家可以去GitHub查看阅读,欢迎老板们前来Star! 搜索关注微信公众号 码出Offer 领取各种学习资料! MySQL基础架构 一.引言 我们在学习MySQL的时候,迈 ...
- js 自定义阻止事件冒泡函数
// 以下改方法全兼容Chrome function stopBubble(event){ if(event.stopPropagation){ // 兼容火狐(firebox) event.st ...
- Babel:下一代Javascript语法编译器
定义 Babel是一个Javascript的编译器,通过它你可以将一些新版本的ECMAScript语法转换成低版本的语法.以便能够在低版本的浏览器或者其它环境平稳运行. 截至目前笔者写这篇文章的时候, ...